A. Maetzel and L. Li, The economic burden of low back pain: a review of studies published between 1996 and 2001, Best Practice & Research Clinical Rheumatology, vol.16, issue.1, pp.23-30, 1996.
DOI : 10.1053/berh.2001.0204

L. March, E. U. Smith, and D. G. Hoy, Burden of disability due to musculoskeletal (MSK) disorders, Best Practice & Research Clinical Rheumatology, vol.28, issue.3, pp.28-353, 2014.
DOI : 10.1016/j.berh.2014.08.002

B. I. Martin, R. A. Deyo, and S. K. Mirza, Expenditures and Health Status Among Adults With Back and Neck Problems, JAMA, vol.299, issue.6, pp.656-664, 2008.
DOI : 10.1001/jama.299.6.656

URL : https://jamanetwork.com/journals/jama/articlepdf/181453/joc80006_656_664.pdf

B. F. Walker, The Prevalence of Low Back Pain: A Systematic Review of the Literature from 1966 to 1998, Journal of Spinal Disorders, vol.13, issue.3, pp.205-217, 1966.
DOI : 10.1097/00002517-200006000-00003

J. N. Katz, LUMBAR DISC DISORDERS AND LOW-BACK PAIN, The Journal of Bone and Joint Surgery-American Volume, vol.88, pp.21-24, 2006.
DOI : 10.2106/00004623-200604002-00005

R. Z. Goetzel, K. Hawkins, and R. J. Ozminkowski, The health and productivity cost burden of the "top 10" physical and mental health conditions affecting six large U.S. employers in, J. Occup. Environ. Med, pp.45-50, 1999.

C. Maher, M. Underwood, and R. Buchbinder, Non-specific low back pain, The Lancet, vol.389, issue.10070, pp.736-747, 2017.
DOI : 10.1016/S0140-6736(16)30970-9

K. Luoma, H. Riihimäki, and R. Luukkonen, Low Back Pain in Relation to Lumbar Disc Degeneration, Spine, vol.25, issue.4, pp.487-492, 2000.
DOI : 10.1097/00007632-200002150-00016

J. Clouet, C. Vinatier, and C. Merceron, The intervertebral disc: From pathophysiology to tissue engineering, Joint Bone Spine, vol.76, issue.6, pp.614-618, 2009.
DOI : 10.1016/j.jbspin.2009.07.002

R. A. Deyo and S. K. Mirza, Trends and Variations in the Use of Spine Surgery, Clinical Orthopaedics and Related Research, vol.443, issue.:, pp.139-146, 2006.
DOI : 10.1097/01.blo.0000198726.62514.75

D. K. Resnick and W. C. Watters, Lumbar disc arthroplasty: a critical review, Clin. Neurosurg, vol.54, pp.83-87, 2007.

S. C. Gamradt and J. C. Wang, Lumbar disc arthroplasty, Lumbar disc arthroplasty, pp.95-103, 2005.
DOI : 10.1016/j.spinee.2004.09.006

G. Ghiselli, J. C. Wang, and N. N. Bhatia, ADJACENT SEGMENT DEGENERATION IN THE LUMBAR SPINE, The Journal of Bone and Joint Surgery-American Volume, vol.86, issue.7, pp.1497-1503, 2004.
DOI : 10.2106/00004623-200407000-00020

J. I. Brox, O. Reikerås, and Ø. Nygaard, Lumbar instrumented fusion compared with cognitive intervention and exercises in patients with chronic back pain after previous surgery for disc herniation: A prospective randomized controlled study, Pain, vol.122, issue.1, pp.145-155, 2006.
DOI : 10.1016/j.pain.2006.01.027

O. Hägg, F. P. Re, J. I. Brox, R. Sörensen, and A. Friis, Randomized clinical trial of lumbar instrumented fusion and cognitive intervention and exercises in patients with chronic low back pain and disc degeneration, Spine, vol.28, pp.1913-1921, 2003.

J. S. Harrop, J. A. Youssef, and M. Maltenfort, Lumbar Adjacent Segment Degeneration and Disease After Arthrodesis and Total Disc Arthroplasty, Spine, vol.33, issue.15, pp.1701-1707, 2008.
DOI : 10.1097/BRS.0b013e31817bb956

M. Rao and S. Cao, Artificial total disc replacement versus fusion for lumbar degenerative disc disease: a meta-analysis of randomized controlled trials, Archives of Orthopaedic and Trauma Surgery, vol.12, issue.Suppl 3, pp.149-158, 2014.
DOI : 10.1007/s00586-002-0516-5

K. D. Van-den-eerenbeemt, R. W. Ostelo, and B. J. Van-royen, Total disc replacement surgery for symptomatic degenerative lumbar disc disease: a systematic review of the literature, European Spine Journal, vol.15, issue.25, pp.1262-1280, 2010.
DOI : 10.2106/00004623-199072030-00013

P. Colombier, A. Camus, and L. Lescaudron, Intervertebral disc regeneration: a great challenge for tissue engineers, Trends in Biotechnology, vol.32, issue.9, pp.433-435, 2014.
DOI : 10.1016/j.tibtech.2014.05.006

D. G. Anderson, M. V. Risbud, and I. M. Shapiro, Cell-based therapy for disc repair, The Spine Journal, vol.5, issue.6, pp.297-303, 2005.
DOI : 10.1016/j.spinee.2005.02.019

D. Sakai, Future perspectives of cell-based therapy for intervertebral disc disease, Eur, Spine J, vol.17, pp.452-458, 2008.

A. Mehrkens, A. M. Müller, and V. Valderrabano, Tissue engineering approaches to degenerative disc disease ??? A meta-analysis of controlled animal trials, Osteoarthritis and Cartilage, vol.20, issue.11, pp.1316-1325, 2012.
DOI : 10.1016/j.joca.2012.06.001

URL : https://doi.org/10.1016/j.joca.2012.06.001

Z. Wang, C. M. Perez-terzic, and J. Smith, Efficacy of intervertebral disc regeneration with stem cells ??? A systematic review and meta-analysis of animal controlled trials, Gene, vol.564, issue.1, pp.1-8, 2015.
DOI : 10.1016/j.gene.2015.03.022

D. Oehme, T. Goldschlager, and P. Ghosh, Cell-Based Therapies Used to Treat Lumbar Degenerative Disc Disease: A Systematic Review of Animal Studies and Human Clinical Trials, Stem Cells International, vol.13, issue.6, pp.2015-946031, 2015.
DOI : 10.1097/01.brs.0000192682.87267.2a

URL : http://doi.org/10.1155/2015/946031

Y. Moriguchi, M. Alimi, and T. Khair, Biological Treatment Approaches for Degenerative Disk Disease: A Literature Review of in Vivo Animal and Clinical Data, Global Spine Journal, vol.9, issue.4, pp.497-518, 2016.
DOI : 10.1097/BRS.0b013e3181d32410

L. Orozco, R. Soler, and C. Morera, Intervertebral Disc Repair by Autologous Mesenchymal Bone Marrow Cells: A Pilot Study, Transplantation, vol.92, issue.7, pp.822-828, 2011.
DOI : 10.1097/TP.0b013e3182298a15

URL : http://pdfs.journals.lww.com/transplantjournal/2011/10150/Intervertebral_Disc_Repair_by_Autologous.20.pdf?token=method|ExpireAbsolute;source|Journals;ttl|1506619112970;payload|mY8D3u1TCCsNvP5E421JYK6N6XICDamxByyYpaNzk7FKjTaa1Yz22MivkHZqjGP4kdS2v0J76WGAnHACH69s21Csk0OpQi3YbjEMdSoz2UhVybFqQxA7lKwSUlA502zQZr96TQRwhVlocEp/sJ586aVbcBFlltKNKo+tbuMfL73hiPqJliudqs17cHeLcLbV/CqjlP3IO0jGHlHQtJWcICDdAyGJMnpi6RlbEJaRheGeh5z5uvqz3FLHgPKVXJzdGlb2qsojlvlytk14LkMXSGRX/5sS/KgYjFrnu5Wqy/9UhU+3E9A1TVBAf3/Gy5fi;hash|AgeDj5U652xsXHv7K72TmA==

J. Becerra, L. Santos-ruiz, and J. A. Andrades, The Stem Cell Niche Should be a Key Issue for Cell Therapy in Regenerative Medicine, Stem Cell Reviews and Reports, vol.2010, issue.13, pp.248-255, 2011.
DOI : 10.1155/2010/961758

H. Henriksson, M. Thornemo, and C. Karlsson, Identification of Cell Proliferation Zones, Progenitor Cells and a Potential Stem Cell Niche in the Intervertebral Disc Region, Spine, vol.34, issue.21, pp.2278-2287, 2009.
DOI : 10.1097/BRS.0b013e3181a95ad2

H. Brisby, N. Papadimitriou, and C. Brantsing, The Presence of Local Mesenchymal Progenitor Cells in Human Degenerated Intervertebral Discs and Possibilities to Influence These In Vitro: A Descriptive Study in Humans, Stem Cells and Development, vol.22, issue.5, pp.804-814, 2013.
DOI : 10.1089/scd.2012.0179

J. F. Blanco, I. F. Graciani, and F. M. Sanchez-guijo, Isolation and Characterization of Mesenchymal Stromal Cells From Human Degenerated Nucleus Pulposus, Spine, vol.35, issue.26, pp.2259-2265, 2010.
DOI : 10.1097/BRS.0b013e3181cb8828

URL : https://digital.csic.es/bitstream/10261/60967/1/accesoRestringido.pdf

M. V. Risbud, A. Guttapalli, and T. Tsai, Evidence for Skeletal Progenitor Cells in the Degenerate Human Intervertebral Disc, Spine, vol.32, issue.23, pp.2537-2544, 2007.
DOI : 10.1097/BRS.0b013e318158dea6

C. Liu, Q. Guo, and J. Li, Identification of Rabbit Annulus Fibrosus-Derived Stem Cells, PLoS ONE, vol.126, issue.9, p.108239, 2014.
DOI : 10.1371/journal.pone.0108239.s005

URL : http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0108239&type=printable

G. Pattappa, M. Peroglio, and D. Sakai, CCL5/RANTES is a key chemoattractant released by degenerative intervertebral discs in organ culture, European Cells and Materials, vol.27, pp.124-136, 2014.
DOI : 10.22203/eCM.v027a10

URL : http://doi.org/10.22203/ecm.v027a10

D. Sakai, Y. Nakamura, and T. Nakai, Exhaustion of nucleus pulposus progenitor cells with ageing and degeneration of the intervertebral disc, Nature Communications, vol.34, issue.1, p.1264, 2012.
DOI : 10.1097/BRS.0b013e3181a55705

Y. Huang, V. Y. Leung, and W. W. Lu, The effects of microenvironment in mesenchymal stem cell???based regeneration of intervertebral disc, The Spine Journal, vol.13, issue.3, pp.352-362, 2013.
DOI : 10.1016/j.spinee.2012.12.005

W. M. Erwin, D. Islam, and R. D. Inman, Notochordal cells protect nucleus pulposus cells from degradation and apoptosis: implications for the mechanisms of intervertebral disc degeneration, Arthritis Research & Therapy, vol.13, issue.6, pp.13-215, 2011.
DOI : 10.1038/sj.cdd.4401826

URL : https://arthritis-research.biomedcentral.com/track/pdf/10.1186/ar3548?site=arthritis-research.biomedcentral.com

C. Hohaus, T. M. Ganey, and Y. Minkus, Cell transplantation in lumbar spine disc degeneration disease, European Spine Journal, vol.13, issue.Suppl 2, pp.492-503, 2008.
DOI : 10.1042/bj2480373

URL : http://europepmc.org/articles/pmc2587656?pdf=render

H. J. Meisel, V. Siodla, and T. Ganey, Clinical experience in cell-based therapeutics: disc chondrocyte transplantation A treatment for degenerated or damaged intervertebral disc, Biomol. Eng, pp.24-29, 2007.
DOI : 10.1016/j.bioeng.2006.07.002

F. L. Acosta, L. Metz, and H. D. Adkisson, Porcine Intervertebral Disc Repair Using Allogeneic Juvenile Articular Chondrocytes or Mesenchymal Stem Cells, Tissue Engineering Part A, vol.17, issue.23-24, pp.3045-3055, 2011.
DOI : 10.1089/ten.tea.2011.0229

URL : http://europepmc.org/articles/pmc3226053?pdf=render

M. F. Pittenger, A. M. Mackay, and S. C. Beck, Multilineage Potential of Adult Human Mesenchymal Stem Cells, Science, vol.284, issue.5411, pp.143-147, 1999.
DOI : 10.1126/science.284.5411.143

J. V. Stoyanov, B. Gantenbein-ritter, and A. Bertolo, Role of hypoxia and growth and differentiation factor-5 on differentiation of human mesenchymal stem cells towards intervertebral nucleus pulposus-like cells, European Cells and Materials, vol.21, pp.533-547, 2011.
DOI : 10.22203/eCM.v021a40

L. E. Clarke, J. C. Mcconnell, and M. J. Sherratt, Growth differentiation factor 6 and transforming growth factor-beta differentially mediate mesenchymal stem cell differentiation, composition, and micromechanical properties of nucleus pulposus constructs, Arthritis Research & Therapy, vol.16, issue.2, p.67, 2014.
DOI : 10.1371/journal.pone.0036789

URL : https://arthritis-research.biomedcentral.com/track/pdf/10.1186/ar4505?site=arthritis-research.biomedcentral.com

P. Colombier, J. Clouet, and C. Boyer, TGF-b1 and GDF5 act synergistically to drive the differentiation of human adipose stromal cells toward nucleus pulposus-like cells, Stem Cells, pp.34-653, 2016.

K. Takahashi and S. Yamanaka, Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, vol.126, issue.4, pp.663-676, 2006.
DOI : 10.1016/j.cell.2006.07.024

URL : https://doi.org/10.1016/j.cell.2006.07.024

Y. Jung, G. Bauer, and J. A. Nolta, Concise Review: Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells: Progress Toward Safe Clinical Products, STEM CELLS, vol.14, issue.379 Suppl, pp.42-47, 2012.
DOI : 10.1038/nm1703

URL : http://onlinelibrary.wiley.com/doi/10.1002/stem.727/pdf

Q. Lian, Y. Zhang, and J. Zhang, Functional Mesenchymal Stem Cells Derived From Human Induced Pluripotent Stem Cells Attenuate Limb Ischemia in Mice, Circulation, vol.121, issue.9, pp.1113-1123, 2010.
DOI : 10.1161/CIRCULATIONAHA.109.898312

URL : http://circ.ahajournals.org/content/circulationaha/121/9/1113.full.pdf

R. M. Guzzo, J. Gibson, and R. Xu, Efficient differentiation of human iPSC-derived mesenchymal stem cells to chondroprogenitor cells, Journal of Cellular Biochemistry, vol.32, issue.Suppl. A, pp.480-490, 2013.
DOI : 10.1007/s10529-010-0293-x

K. Hynes, D. Menicanin, and K. Mrozik, Generation of Functional Mesenchymal Stem Cells from Different Induced Pluripotent Stem Cell Lines, Stem Cells and Development, vol.23, issue.10, pp.1084-1096, 2014.
DOI : 10.1089/scd.2013.0111

K. Choi, M. J. Cohn, and B. D. Harfe, Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: Implications for disk degeneration and chordoma formation, Developmental Dynamics, vol.18, issue.12, pp.237-3953, 2008.
DOI : 10.1007/BF00186991

M. R. Mccann, O. J. Tamplin, and J. Rossant, Tracing notochord-derived cells using a Noto-cre mouse: implications for intervertebral disc development, Disease Models & Mechanisms, vol.5, issue.1, pp.73-82, 2012.
DOI : 10.1242/dmm.008128

F. C. Bach, S. A. De-vries, and F. M. Riemers, Soluble and pelletable factors in porcine, canine and human notochordal cell-conditioned medium: implications for IVD regeneration, European Cells and Materials, vol.32, pp.32-163, 2016.
DOI : 10.22203/eCM.v032a11

URL : https://dspace.library.uu.nl/bitstream/1874/341934/1/v032a11.pdf

W. M. Erwin, The Notochord, Notochordal cell and CTGF/CCN-2: ongoing activity from development through maturation, Journal of Cell Communication and Signaling, vol.27, issue.6, pp.59-65, 2008.
DOI : 10.1007/s12079-008-0031-5

URL : https://link.springer.com/content/pdf/10.1007%2Fs12079-008-0031-5.pdf

W. M. Erwin and R. D. Inman, Notochord Cells Regulate Intervertebral Disc Chondrocyte Proteoglycan Production and Cell Proliferation, Spine, vol.31, issue.10, pp.1094-1099, 2006.
DOI : 10.1097/01.brs.0000216593.97157.dd

L. M. Boyd, J. Chen, and V. B. Kraus, Conditioned Medium Differentially Regulates Matrix Protein Gene Expression in Cells of the Intervertebral Disc, Spine, vol.29, issue.20, pp.2217-2222, 2004.
DOI : 10.1097/01.brs.0000142747.90488.1d

C. L. Korecki, J. M. Taboas, and R. S. Tuan, Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype, Stem Cell Research & Therapy, vol.1, issue.2, 2010.
DOI : 10.1186/scrt18

URL : https://stemcellres.biomedcentral.com/track/pdf/10.1186/scrt18?site=stemcellres.biomedcentral.com

Y. Yamanaka, O. J. Tamplin, and A. Beckers, Live Imaging and Genetic Analysis of Mouse Notochord Formation Reveals Regional Morphogenetic Mechanisms, Developmental Cell, vol.13, issue.6, pp.884-896, 2007.
DOI : 10.1016/j.devcel.2007.10.016

URL : https://doi.org/10.1016/j.devcel.2007.10.016

J. Chen, E. J. Lee, and L. Jing, Differentiation of Mouse Induced Pluripotent Stem Cells (iPSCs) into Nucleus Pulposus-Like Cells In Vitro, PLoS ONE, vol.23, issue.9, p.75548, 2013.
DOI : 10.1371/journal.pone.0075548.t003

H. Abdelkhalek, A. Ben, K. Beckers, and . Schuster-gossler, The mouse homeobox gene Not is required for caudal notochord development and affected by the truncate mutation, Genes & Development, vol.18, issue.14, pp.1725-1736, 2004.
DOI : 10.1101/gad.303504

A. Beckers, L. Alten, and C. Viebahn, The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left right patterning, Proceedings of the National Academy of Sciences, vol.21, issue.1, pp.15765-15770, 2007.
DOI : 10.1002/jemt.1070210111

W. S. Talbot, B. Trevarrow, and M. E. Halpern, A homeobox gene essential for zebrafish notochord development, Nature, vol.378, issue.6553, pp.150-157, 1995.
DOI : 10.1038/378150a0

N. Sharon, I. Mor, and T. Golan-lev, Molecular and Functional Characterizations of Gastrula Organizer Cells Derived from Human Embryonic Stem Cells, STEM CELLS, vol.44, issue.4, pp.600-608, 2011.
DOI : 10.1016/j.neuron.2004.12.002

M. K. Winzi, P. Hyttel, and J. K. Dale, Isolation and Characterization of Node/Notochord-Like Cells from Mouse Embryonic Stem Cells, Stem Cells and Development, vol.20, issue.11, pp.1817-1827, 2011.
DOI : 10.1089/scd.2011.0042

Y. Liu, M. N. Rahaman, and B. S. Bal, Modulating Notochordal Differentiation of Human Induced Pluripotent Stem Cells Using Natural Nucleus Pulposus Tissue Matrix, PLoS ONE, vol.54, issue.7, p.100885, 2014.
DOI : 10.1371/journal.pone.0100885.g004

D. Ruan, H. Xin, and C. Zhang, Experimental Intervertebral Disc Regeneration with Tissue-Engineered Composite in a Canine Model, Tissue Engineering Part A, vol.16, issue.7, pp.2381-2389, 2010.
DOI : 10.1089/ten.tea.2009.0770

T. Iwashina, J. Mochida, and D. Sakai, Feasibility of Using a Human Nucleus Pulposus Cell Line as a Cell Source in Cell Transplantation Therapy for Intervertebral Disc Degeneration, Spine, vol.31, issue.11, pp.1177-1186, 2006.
DOI : 10.1097/01.brs.0000217687.36874.c4

H. Yang, J. Wu, and J. Liu, Transplanted mesenchymal stem cells with pure fibrinous gelatin-transforming growth factor-??1 decrease rabbit intervertebral disc degeneration, The Spine Journal, vol.10, issue.9, pp.802-810, 2010.
DOI : 10.1016/j.spinee.2010.06.019

R. A. Subhan, K. Puvanan, and M. R. Murali, Fluoroscopy assisted minimally invasive transplantation of allogenic mesenchymal stromal cells embedded in HyStem reduces the progression of nucleus pulposus degeneration in the damaged intervertebral disc: a preliminary study in rabbits, Sci, 2014.

P. Ghosh, R. Moore, and B. Vernon-roberts, mesenchymal precursor cells and restoration of the extracellular matrix of degenerate intervertebral discs, Journal of Neurosurgery: Spine, vol.36, issue.2, pp.479-488, 2012.
DOI : 10.1097/BRS.0b013e3181f60b39

D. Oehme, P. Ghosh, and S. Shimmon, Mesenchymal progenitor cells combined with pentosan polysulfate mediating disc regeneration at the time of microdiscectomy: a preliminary study in an ovine model, Journal of Neurosurgery: Spine, vol.28, issue.6, pp.657-669, 2014.
DOI : 10.1091/mbc.E02-02-0105

T. Ganey, W. C. Hutton, and T. Moseley, Intervertebral Disc Repair Using Adipose Tissue-Derived Stem and Regenerative Cells, Spine, vol.34, issue.21, pp.2297-2304, 2009.
DOI : 10.1097/BRS.0b013e3181a54157

P. A. Revell, E. Damien, and L. D. Silvio, Tissue engineered intervertebral disc repair in the pig using injectable polymers, Journal of Materials Science: Materials in Medicine, vol.80, issue.2, pp.303-308, 2007.
DOI : 10.1016/0304-4165(72)90160-2

M. Bendtsen, C. E. Bünger, and X. Zou, Autologous Stem Cell Therapy Maintains Vertebral Blood Flow and Contrast Diffusion Through the Endplate in Experimental Intervertebral Disc Degeneration, Spine, vol.36, issue.6, pp.373-382, 2011.
DOI : 10.1097/BRS.0b013e3181dce34c

G. W. Omlor, J. Fischer, and K. Kleinschmitt, Short-term follow-up of disc cell therapy in a porcine nucleotomy model with an albumin???hyaluronan hydrogel: in vivo and in vitro results of metabolic disc cell activity and implant distribution, European Spine Journal, vol.8, issue.Suppl 3, pp.1837-1847, 2014.
DOI : 10.1016/j.spinee.2007.09.011

Y. Zhang, S. Drapeau, and S. A. Howard, Transplantation of Goat Bone Marrow Stromal Cells to the Degenerating Intervertebral Discin a Goat Disc Injury Model, Spine, vol.36, issue.5, pp.372-377, 2011.
DOI : 10.1097/BRS.0b013e3181d10401

T. Goldschlager, P. Ghosh, and A. Zannettino, Cervical motion preservation using mesenchymal progenitor cells and pentosan polysulfate, a novel chondrogenic agent: preliminary study in an ovine model, Neurosurgical Focus, vol.40, issue.2, pp.28-32, 2010.
DOI : 10.1096/fj.08-112680

K. Benz, C. Stippich, and L. Fischer, Intervertebral disc cell- and hydrogel-supported and spontaneous intervertebral disc repair in nucleotomized sheep, European Spine Journal, vol.34, issue.Suppl 3, pp.1758-1768, 2012.
DOI : 10.1097/BRS.0b013e3181a0193d

H. Mizuno, A. K. Roy, and C. A. Vacanti, Tissue-Engineered Composites of Anulus Fibrosus and Nucleus Pulposus for Intervertebral Disc Replacement, Spine, vol.29, issue.12, pp.1290-1297, 2004.
DOI : 10.1097/01.BRS.0000128264.46510.27

Y. Zhuang, B. Huang, and C. Q. Li, Construction of tissue-engineered composite intervertebral disc and preliminary morphological and biochemical evaluation, Biochemical and Biophysical Research Communications, vol.407, issue.2, pp.407-327, 2011.
DOI : 10.1016/j.bbrc.2011.03.015

R. D. Bowles, H. H. Gebhard, and R. Härtl, Tissue-engineered intervertebral discs produce new matrix, maintain disc height, and restore biomechanical function to the rodent spine, Proceedings of the National Academy of Sciences, vol.184, issue.32, pp.13106-13111, 2011.
DOI : 10.1083/jcb.54.3.626

URL : http://www.pnas.org/content/108/32/13106.full.pdf

J. E. Frith, A. R. Cameron, and D. J. Menzies, An injectable hydrogel incorporating mesenchymal precursor cells and pentosan polysulphate for intervertebral disc regeneration, Biomaterials, vol.34, issue.37, pp.9430-9440, 2013.
DOI : 10.1016/j.biomaterials.2013.08.072

M. Sato, M. Kikuchi, and M. Ishihara, Tissue engineering of the intervertebral disc with cultured annulus fibrosus cells using atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS scaffold, Med. Biol. Eng. Comput, pp.41-365, 2003.

B. Huang, Y. Zhuang, and C. Li, Regeneration of the Intervertebral Disc With Nucleus Pulposus Cell-Seeded Collagen II/Hyaluronan/Chondroitin-6-Sulfate Tri-Copolymer Constructs in a Rabbit Disc Degeneration Model, Spine, vol.36, issue.26, pp.2252-2259, 2011.
DOI : 10.1097/BRS.0b013e318209fd85

V. Y. Leung, D. M. Aladin, and F. Lv, Mesenchymal Stem Cells Reduce Intervertebral Disc Fibrosis and Facilitate Repair, Mesenchymal stem cells reduce intervertebral disc fibrosis and facilitate repair, pp.2164-2177, 2014.
DOI : 10.1007/s00586-006-0171-3

H. Xin, C. Zhang, and D. Wang, Tissue-Engineered Allograft Intervertebral Disc Transplantation for the Treatment of Degenerative Disc Disease: Experimental Study in a Beagle Model, Tissue Engineering Part A, vol.19, issue.1-2, pp.143-151, 2013.
DOI : 10.1089/ten.tea.2012.0255

G. Crevensten, A. J. Walsh, and D. Ananthakrishnan, Intervertebral Disc Cell Therapy for Regeneration: Mesenchymal Stem Cell Implantation in Rat Intervertebral Discs, Annals of Biomedical Engineering, vol.32, issue.3, pp.32-430, 2004.
DOI : 10.1023/B:ABME.0000017545.84833.7c

J. H. Jeong, E. S. Jin, and J. K. Min, Human mesenchymal stem cells implantation into the degenerated coccygeal disc of the rat, Cytotechnology, vol.29, issue.Suppl 3, pp.55-64, 2009.
DOI : 10.1212/WNL.59.4.514

J. H. Jeong, J. H. Lee, and E. S. Jin, Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells, Acta Neurochirurgica, vol.13, issue.10, pp.1771-1777, 2010.
DOI : 10.1212/WNL.59.4.514

A. Hiyama, J. Mochida, and T. Iwashina, Transplantation of mesenchymal stem cells in a canine disc degeneration model, Journal of Orthopaedic Research, vol.23, issue.5, pp.589-600, 2008.
DOI : 10.1097/01.brs.0000148152.04401.20

T. Miyamoto, T. Muneta, and T. Tabuchi, Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits, Arthritis Research & Therapy, vol.12, issue.6, pp.12-206, 2010.
DOI : 10.1186/ar3182

K. Serigano, D. Sakai, and A. Hiyama, Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model, Journal of Orthopaedic Research, vol.88, issue.Suppl 2, pp.1267-1275, 2010.
DOI : 10.1097/01.brs.0000148152.04401.20

F. Cai, X. Wu, and X. Xie, Evaluation of intervertebral disc regeneration with implantation of bone marrow mesenchymal stem cells (BMSCs) using quantitative T2 mapping: a study in rabbits, International Orthopaedics, vol.23, issue.Suppl 1, pp.39-149, 2015.
DOI : 10.1007/s00586-013-2977-0

G. Feng, X. Zhao, and H. Liu, Transplantation of mesenchymal stem cells and nucleus pulposus cells in a degenerative disc model in rabbits: a comparison of 2 cell types as potential candidates for disc regeneration, Journal of Neurosurgery: Spine, vol.41, issue.2, pp.322-329, 2011.
DOI : 10.1097/01.blo.0000146534.31120.cf

T. Ganey, J. Libera, and V. Moos, Disc Chondrocyte Transplantation in a Canine Model: A Treatment for Degenerated or Damaged Intervertebral Disc, Spine, vol.28, issue.23, pp.2609-2620, 2003.
DOI : 10.1097/01.BRS.0000097891.63063.78

H. T. Hee, H. D. Ismail, and C. T. Lim, Effects of implantation of bone marrow mesenchymal stem cells, disc distraction and combined therapy on reversing degeneration of the intervertebral disc, The Journal of Bone and Joint Surgery. British volume, vol.92, issue.5, pp.92-726, 2010.
DOI : 10.1302/0301-620X.92B5.23015

H. Sheikh, K. Zakharian, and R. P. De-la-torre, In vivo intervertebral disc regeneration using stem cell???derived chondroprogenitors, Journal of Neurosurgery: Spine, vol.80, issue.3, pp.265-272, 2009.
DOI : 10.2106/00004623-199812000-00004

H. B. Henriksson, T. Svanvik, and M. Jonsson, Transplantation of Human Mesenchymal Stems Cells Into Intervertebral Discs in a Xenogeneic Porcine Model, Spine, vol.34, issue.2, pp.141-148, 2009.
DOI : 10.1097/BRS.0b013e31818f8c20

S. Sobajima, G. Vadala, and A. Shimer, Feasibility of a stem cell therapy for intervertebral disc degeneration, The Spine Journal, vol.8, issue.6, pp.888-896, 2008.
DOI : 10.1016/j.spinee.2007.09.011

V. Tam, I. Rogers, and D. Chan, A comparison of intravenous and intradiscal delivery of multipotential stem cells on the healing of injured intervertebral disk, Journal of Orthopaedic Research, vol.13, issue.6, pp.32-819, 2014.
DOI : 10.1016/j.spinee.2012.12.002

H. E. Gruber, T. L. Johnson, and K. Leslie, Autologous Intervertebral Disc Cell Implantation, Spine, vol.27, issue.15, pp.1626-1633, 2002.
DOI : 10.1097/00007632-200208010-00007

A. A. Allon, K. Butcher, and R. A. Schneider, Structured Bilaminar Coculture Outperforms Stem Cells and Disc Cells in a Simulated Degenerate Disc Environment, Structured bilaminar coculture outperforms stem cells and disc cells in a simulated degenerate disc environment, pp.813-818, 2012.
DOI : 10.1097/BRS.0b013e31823b055f

M. Okuma, J. Mochida, and K. Nishimura, Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration: Anin vitro andin vivo experimental study, Journal of Orthopaedic Research, vol.6, issue.6, pp.988-997, 2000.
DOI : 10.1002/jor.1100180620

M. Gorensek, C. Jaksimovi?, and N. Kregar-velikonja, Nucleus pulposus repair with cultured autologous elastic cartilage derived chondrocytes, Cell. Mol. Biol. Lett, vol.9, pp.363-373, 2004.

Y. Zhang, X. Guo, and P. Xu, Bone Mesenchymal Stem Cells Transplanted into Rabbit Intervertebral Discs Can Increase Proteoglycans, Clinical Orthopaedics and Related Research, vol.&NA;, issue.430, pp.219-226, 2005.
DOI : 10.1097/01.blo.0000146534.31120.cf

G. Ho, V. Y. Leung, and K. M. Cheung, Effect of Severity of Intervertebral Disc Injury on Mesenchymal Stem Cell-Based Regeneration, Connective Tissue Research, vol.20, issue.11, pp.49-64, 2008.
DOI : 10.1073/pnas.1834138100

B. J. Freeman and J. Davenport, Total disc replacement in the lumbar spine: a systematic review of the literature, European Spine Journal, vol.4, issue.1, pp.439-486, 2006.
DOI : 10.1097/00024720-200308000-00007

T. Nukaga, D. Sakai, and M. Tanaka, Transplantation of activated nucleus pulposus cells after cryopreservation: efficacy study in a canine disc degeneration model, Eur. Cell. Mater, pp.31-95, 2016.

Y. Zhang, H. Tao, and T. Gu, The effects of human Wharton???s jelly cell transplantation on the intervertebral disc in a canine disc degeneration model, Stem Cell Research & Therapy, vol.23, issue.1, 2015.
DOI : 10.1634/stemcells.2004-0166

]. D. Sakai, J. Mochida, and T. Iwashina, Differentiation of Mesenchymal Stem Cells Transplanted to a Rabbit Degenerative Disc Model, Spine, vol.30, issue.21, pp.2379-2387, 2005.
DOI : 10.1097/01.brs.0000184365.28481.e3

C. L. Le-maitre, P. Baird, and A. J. Freemont, An in vitro study investigating the survival and phenotype of mesenchymal stem cells following injection into nucleus pulposus tissue, Arthritis Research & Therapy, vol.11, issue.1, pp.11-20, 2009.
DOI : 10.1186/ar2611

G. Vadala, G. Sowa, and M. Hubert, Mesenchymal stem cells injection in degenerated intervertebral disc: cell leakage may induce osteophyte formation, Journal of Tissue Engineering and Regenerative Medicine, vol.430, issue.5, pp.348-353, 2012.
DOI : 10.1097/01.blo.0000146534.31120.cf

D. Sakai, J. Mochida, and T. Iwashina, Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc, Biomaterials, vol.27, issue.3, pp.335-345, 2006.
DOI : 10.1016/j.biomaterials.2005.06.038

D. Sakai, J. Mochida, and Y. Yamamoto, Transplantation of mesenchymal stem cells embedded in Atelocollagen?? gel to the intervertebral disc: a potential therapeutic model for disc degeneration, Biomaterials, vol.24, issue.20, pp.3531-3541, 2003.
DOI : 10.1016/S0142-9612(03)00222-9

L. L. Black, J. Gaynor, and C. Adams, Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs, Vet. Ther, vol.9, pp.192-200, 2008.

S. Ohnishi, B. Yanagawa, and K. Tanaka, Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis, Journal of Molecular and Cellular Cardiology, vol.42, issue.1, pp.42-88, 2007.
DOI : 10.1016/j.yjmcc.2006.10.003

P. Semedo, P. M. Wang, and T. H. Andreucci, Mesenchymal Stem Cells Ameliorate Tissue Damages Triggered by Renal Ischemia and Reperfusion Injury, Transplantation Proceedings, vol.39, issue.2, pp.39-421, 2007.
DOI : 10.1016/j.transproceed.2007.01.036

B. Parekkadan, D. Van-poll, and K. Suganuma, Mesenchymal Stem Cell-Derived Molecules Reverse Fulminant Hepatic Failure, PLoS ONE, vol.46, issue.9, p.941, 2007.
DOI : 10.1371/journal.pone.0000941.g006

E. Gerdoni, B. Gallo, and S. Casazza, Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis, Annals of Neurology, vol.38, issue.3, pp.61-219, 2007.
DOI : 10.1002/ana.21076

M. F. Rasulov, V. T. Vasilenko, and V. A. Zaidenov, Cell transplantation inhibits inflammatory reaction and stimulates repair processes in burn wound, Bulletin of Experimental Biology and Medicine, vol.29, issue.4, pp.142-112, 2006.
DOI : 10.1016/S0305-4179(03)00013-5

X. Hu, Y. Zhou, and X. Zheng, Differentiation of Menstrual Blood???Derived Stem Cells Toward Nucleus Pulposus-Like Cells in a Coculture System With Nucleus Pulposus Cells, Spine, vol.39, issue.9, pp.754-760, 2014.
DOI : 10.1097/BRS.0000000000000261

E. Potier and K. Ito, Using notochordal cells of developmental origin to stimulate nucleus pulposus cells and bone marrow stromal cells for intervertebral disc regeneration, European Spine Journal, vol.19, issue.Suppl 6, pp.679-688, 2014.
DOI : 10.1007/s00586-009-1217-0

C. , L. Visage, S. W. Kim, and K. Tateno, Interaction of human mesenchymal stem cells with disc cells: changes in extracellular matrix biosynthesis, Spine, vol.31, pp.2036-2042, 2006.

M. B. Murphy, K. Moncivais, and A. I. Caplan, Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine, Experimental & Molecular Medicine, vol.154, issue.11, pp.45-54, 2013.
DOI : 10.3324/haematol.11869

URL : https://www.nature.com/articles/emm201394.pdf

J. Mochida, D. Sakai, and Y. Nakamura, Intervertebral disc repair with activated nucleus pulposus cell transplantation: a three-year, prospective clinical study of its safety, European Cells and Materials, vol.29, pp.29-202, 2015.
DOI : 10.22203/eCM.v029a15

E. C. Collin, S. Grad, and D. I. Zeugolis, An injectable vehicle for nucleus pulposus cell-based therapy, Biomaterials, vol.32, issue.11, pp.2862-2870, 2011.
DOI : 10.1016/j.biomaterials.2011.01.018

D. O. Halloran, S. Grad, and M. Stoddart, An injectable cross-linked scaffold for nucleus pulposus regeneration, Biomaterials, vol.29, issue.4, pp.438-447, 2008.
DOI : 10.1016/j.biomaterials.2007.10.009

P. Roughley, C. Hoemann, and E. Desrosiers, The potential of chitosan-based gels containing intervertebral disc cells for nucleus pulposus supplementation, Biomaterials, vol.27, issue.3, pp.388-396, 2006.
DOI : 10.1016/j.biomaterials.2005.06.037

C. Mauth, E. Bono, and S. Haas, Cell-seeded polyurethane-fibrin structures ??? A possible system for intervertebral disc regeneration, European Cells and Materials, vol.18, pp.27-38, 2009.
DOI : 10.22203/eCM.v018a03

URL : https://doi.org/10.22203/ecm.v018a03

D. M. O-'halloran and A. S. Pandit, Tissue-Engineering Approach to Regenerating the Intervertebral Disc, Tissue Engineering, vol.13, issue.8, pp.1927-1954, 2007.
DOI : 10.1089/ten.2005.0608

B. P. Chan and K. W. Leong, Scaffolding in tissue engineering: general approaches and tissue-specific considerations, European Spine Journal, vol.24, issue.12, pp.467-479, 2008.
DOI : 10.1002/jbm.b.30170

URL : http://europepmc.org/articles/pmc2587658?pdf=render

K. Flégeau, R. Pace, and H. Gautier, Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine, Advances in Colloid and Interface Science, vol.247, pp.589-609, 2017.
DOI : 10.1016/j.cis.2017.07.012

C. Cunha, C. R. Almeida, and M. I. Almeida, Systemic Delivery of Bone Marrow Mesenchymal Stem Cells for In Situ Intervertebral Disc Regeneration, STEM CELLS Translational Medicine, vol.33, issue.44, pp.1029-1039, 2017.
DOI : 10.1002/jor.22789

T. Yoshikawa, Y. Ueda, and K. Miyazaki, Disc Regeneration Therapy Using Marrow Mesenchymal Cell Transplantation, Spine, vol.35, issue.11, pp.475-80, 2010.
DOI : 10.1097/BRS.0b013e3181cd2cf4

K. Pettine, M. B. Murphy, and R. K. Suzuki, Percutaneous Injection of Autologous Bone Marrow Concentrate Cells Significantly Reduces Lumbar Discogenic Pain Through 12 Months, STEM CELLS, vol.22, issue.1, pp.146-156, 2015.
DOI : 10.3122/jabfm.2009.01.080102

URL : https://stemcellsjournals.onlinelibrary.wiley.com/doi/pdf/10.1002/stem.1845

K. Pettine, R. Suzuki, and T. Sand, Treatment of discogenic back pain with autologous bone marrow concentrate injection with minimum two year follow-up, International Orthopaedics, vol.38, issue.1, pp.40-135, 2016.
DOI : 10.1007/s00264-013-2156-2

C. Elabd, C. J. Centeno, and J. R. Schultz, Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: a long-term safety and feasibility study, Journal of Translational Medicine, vol.9, issue.4, 2016.
DOI : 10.4184/asj.2015.9.4.645

D. Coric, K. Pettine, and A. Sumich, Prospective study of disc repair with allogeneic chondrocytes Presented at the 2012 Joint Spine Section Meeting, Journal of Neurosurgery: Spine, vol.12, issue.15, pp.85-95, 2013.
DOI : 10.1097/BRS.0b013e318054e377

K. A. Pettine, R. K. Suzuki, and T. T. Sand, Autologous bone marrow concentrate intradiscal injection for the treatment of degenerative disc disease with threeyear follow-up, Int. Orthop, issue.10, pp.41-2097, 2017.

D. C. Noriega, F. Ardura, and R. Hernández-ramajo, Intervertebral Disc Repair by Allogeneic Mesenchymal Bone Marrow Cells, Transplantation, vol.101, issue.8, pp.1945-1951, 2016.
DOI : 10.1097/TP.0000000000001484

A. A. Thorpe, A. L. Binch, and L. B. Creemers, Nucleus pulposus phenotypic markers to determine stem cell differentiation: fact or fiction?, Oncotarget, vol.7, issue.3, pp.2189-2200, 2016.
DOI : 10.18632/oncotarget.6782

URL : http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=6782&path%5B%5D=19042

M. V. Risbud, Z. R. Schoepflin, and F. Mwale, Defining the phenotype of young healthy nucleus pulposus cells: Recommendations of the Spine Research Interest Group at the 2014 annual ORS meeting, Journal of Orthopaedic Research, vol.196, issue.3, pp.33-283, 2015.
DOI : 10.1159/000332985

X. Li, B. M. Leo, and G. Beck, Collagen and Proteoglycan Abnormalities in the GDF-5-Deficient Mice and Molecular Changes When Treating Disk Cells With Recombinant Growth Factor, Spine, vol.29, issue.20, pp.2229-2234, 2004.
DOI : 10.1097/01.brs.0000142427.82605.fb

T. Chujo, H. S. An, and K. Akeda, Effects of Growth Differentiation Factor-5 on the Intervertebral Disc???In Vitro Bovine Study and In Vivo Rabbit Disc Degeneration Model Study, Spine, vol.31, issue.25, pp.31-2909, 2006.
DOI : 10.1097/01.brs.0000248428.22823.86

E. M. Bartels, J. C. Fairbank, and C. P. Winlove, Oxygen and Lactate Concentrations Measured in Vivo in the Intervertebral Discs of Patients With Scoliosis and Back Pain, Spine, vol.23, issue.1, pp.1-7, 1998.
DOI : 10.1097/00007632-199801010-00001

S. Roberts, J. P. Urban, and H. Evans, Transport Properties of the Human Cartilage Endplate in Relation to Its Composition and Calcification, Spine, vol.21, issue.4, pp.415-420, 1996.
DOI : 10.1097/00007632-199602150-00003

J. J. Maclean, C. R. Lee, and M. Alini, Anabolic and catabolic mRNA levels of the intervertebral disc vary with the magnitude and frequency of in vivo dynamic compression, Journal of Orthopaedic Research, vol.11, issue.6, pp.22-1193, 2004.
DOI : 10.1097/00002517-199806000-00015

K. Wuertz, K. Godburn, and C. Neidlinger-wilke, Behavior of Mesenchymal Stem Cells in the Chemical Microenvironment of the Intervertebral Disc, Spine, vol.33, issue.17, pp.1843-1849, 2008.
DOI : 10.1097/BRS.0b013e31817b8f53

C. Liang, H. Li, and Y. Tao, Responses of human adipose-derived mesenchymal stem cells to chemical microenvironment of the intervertebral disc, Journal of Translational Medicine, vol.10, issue.1, p.49, 2012.
DOI : 10.1302/0301-620X.86B2.14918

S. M. Naqvi and C. T. Buckley, Extracellular matrix production by nucleus pulposus and bone marrow stem cells in response to altered oxygen and glucose microenvironments, Journal of Anatomy, vol.13, issue.Suppl 4, pp.757-766, 2015.
DOI : 10.1016/j.spinee.2013.05.025

URL : http://www.tara.tcd.ie/bitstream/2262/80187/1/Matrix%20Production%20by%20Nucleus%20Pulposus%20and%20Bone%20Marrow%20Stem%20Cells-Naqvi2015.pdf

Y. Wang, Z. Han, and Y. Song, Safety of Mesenchymal Stem Cells for Clinical Application, Stem Cells International, vol.20, issue.6, pp.2012-2013, 2012.
DOI : 10.1101/gad.1165204

W. Zhu, W. Xu, and R. Jiang, Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo, Experimental and Molecular Pathology, vol.80, issue.3, pp.267-274, 2006.
DOI : 10.1016/j.yexmp.2005.07.004

A. E. Karnoub, A. B. Dash, and A. P. Vo, Mesenchymal stem cells within tumour stroma promote breast cancer metastasis, Nature, vol.9, issue.7162, pp.557-563, 2007.
DOI : 10.3233/BD-2007-26107

M. Breitbach, T. Bostani, and W. Roell, Potential risks of bone marrow cell transplantation into infarcted hearts, Blood, vol.110, issue.4, pp.1362-1369, 2007.
DOI : 10.1182/blood-2006-12-063412

URL : http://www.bloodjournal.org/content/bloodjournal/110/4/1362.full.pdf

P. P. Raj, Intervertebral disc: anatomy-physiology-pathophysiology-treatment, Pain Pract, pp.18-44, 2008.
DOI : 10.1111/j.1533-2500.2007.00171.x

D. Wang, H. Zhang, and J. Liang, Allogeneic mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus: 4 years experience, Cell Transplantation, vol.22, pp.2267-2277, 2013.
DOI : 10.3727/096368912X658719

O. N. Koç, S. L. Gerson, and B. W. Cooper, Rapid Hematopoietic Recovery After Coinfusion of Autologous-Blood Stem Cells and Culture-Expanded Marrow Mesenchymal Stem Cells in Advanced Breast Cancer Patients Receiving High-Dose Chemotherapy, Journal of Clinical Oncology, vol.18, issue.2, pp.307-316, 2000.
DOI : 10.1200/JCO.2000.18.2.307

P. Wang, Y. Li, and L. Huang, Effects and Safety of Allogenic Mesenchymal Stem Cell Intravenous Infusion in Active Ankylosing Spondylitis Patients who Failed NSAIDs: A 20-Week Clinical Trial, Cell Transplantation, vol.13, issue.1, pp.1293-1303, 2014.
DOI : 10.3727/096368910X508762

H. M. Lazarus, O. N. Koc, and S. M. Devine, Cotransplantation of HLA-Identical Sibling Culture-Expanded Mesenchymal Stem Cells and Hematopoietic Stem Cells in Hematologic Malignancy Patients, Biology of Blood and Marrow Transplantation, vol.11, issue.5, pp.389-398, 2005.
DOI : 10.1016/j.bbmt.2005.02.001

M. E. Bernardo, D. Pagliara, and F. Locatelli, Mesenchymal stromal cell therapy: a revolution in Regenerative Medicine?, Bone Marrow Transplantation, vol.10, issue.2, pp.164-171, 2012.
DOI : 10.1634/stemcells.2005-0604

URL : http://www.nature.com/bmt/journal/v47/n2/pdf/bmt201181a.pdf

J. M. Hare, J. E. Fishman, and G. Gerstenblith, Comparison of Allogeneic vs Autologous Bone Marrow???Derived Mesenchymal Stem Cells Delivered by Transendocardial Injection in Patients With Ischemic Cardiomyopathy, JAMA, vol.308, issue.22, pp.2369-2379, 2012.
DOI : 10.1001/jama.2012.25321

URL : http://jama.jamanetwork.com/data/journals/jama/926059/jpc120011_2369_2379.pdf

J. García-sancho, A. Sánchez, and A. Vega, Influence of HLA Matching on the Efficacy of Allogeneic Mesenchymal Stromal Cell Therapies for Osteoarthritis and Degenerative Disc Disease, Transplantation Direct, vol.3, issue.9, p.205, 2017.
DOI : 10.1097/TXD.0000000000000724

A. Joswig, A. Mitchell, and K. J. Cummings, Repeated intra-articular injection of allogeneic mesenchymal stem cells causes an adverse response compared to autologous cells in the equine model, Stem Cell Research & Therapy, vol.3, issue.1, p.42, 2017.
DOI : 10.3389/fvets.2016.00023

C. J. Taylor, E. M. Bolton, and J. A. Bradley, Immunological considerations for embryonic and induced pluripotent stem cell banking, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.120, issue.6, pp.366-2312, 2011.
DOI : 10.1038/cr.2007.97

URL : http://rstb.royalsocietypublishing.org/content/royptb/366/1575/2312.full.pdf

R. Maidhof, A. Rafiuddin, and F. Chowdhury, Timing of mesenchymal stem cell delivery impacts the fate and therapeutic potential in intervertebral disc repair, Journal of Orthopaedic Research, vol.45, issue.1, pp.32-40, 2017.
DOI : 10.1038/emm.2013.94

E. J. Carragee, A. S. Don, and E. L. Hurwitz, ISSLS prize winner: does discography cause accelerated progression of degeneration changes in the lumbar disc, pp.2338-2345, 2009.

G. Vadalà, F. De-strobel, and M. Bernardini, The transpedicular approach for the study of intervertebral disc regeneration strategies: in vivo characterization, European Spine Journal, vol.95, issue.Suppl 1, pp.972-978, 2013.
DOI : 10.1007/s12306-011-0097-8

G. Vadalà, F. Russo, and G. Pattappa, The Transpedicular Approach As an Alternative Route for Intervertebral Disc Regeneration, Spine, vol.38, issue.6, pp.319-324, 2013.
DOI : 10.1097/BRS.0b013e318285bc4a

F. Ringel, M. Stoffel, and C. Stüer, Minimally Invasive Transmuscular Pedicle Screw Fixation of the Thoracic and Lumbar Spine, Operative Neurosurgery, vol.48, pp.361-366, 2006.
DOI : 10.1227/01.NEU.0000119330.70023.8F

R. S. Taylor, P. Fritzell, and R. J. Taylor, Balloon kyphoplasty in the management of vertebral compression fractures: an updated systematic review and meta-analysis, European Spine Journal, vol.30, issue.8, pp.1085-1100, 2007.
DOI : 10.1097/01.RVI.0000144757.14780.E0

P. Galibert, H. Deramond, and P. Rosat, Preliminary note on the treatment of vertebral angioma by percutaneous acrylic vertebroplasty, Neurochirurgie, vol.33, pp.166-168, 1987.

L. , L. Fournier, M. Fusellier, and B. Halgand, The transpedicular surgical approach for the development of intervertebral disc targeting regenerative strategies in an ovine model, Eur. Spine J, vol.26, pp.2072-2083, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01563201

H. Bertram, M. Kroeber, and H. Wang, Matrix-assisted cell transfer for intervertebral disc cell therapy, Biochemical and Biophysical Research Communications, vol.331, issue.4, pp.331-1185, 2005.
DOI : 10.1016/j.bbrc.2005.04.034

H. Kamao, M. Mandai, and S. Okamoto, Characterization of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cell Sheets Aiming for Clinical Application, Stem Cell Reports, vol.2, issue.2, pp.205-218, 2014.
DOI : 10.1016/j.stemcr.2013.12.007

URL : https://doi.org/10.1016/j.stemcr.2013.12.007

P. Karagiannis and K. Eto, Ten??years of induced pluripotency: from basic mechanisms to therapeutic applications, Development, vol.143, issue.12, pp.2039-2043, 2016.
DOI : 10.1016/j.stemcr.2015.01.016

URL : http://dev.biologists.org/content/develop/143/12/2039.full.pdf

V. Sivakamasundri and T. Lufkin, Stemming the degeneration: IVD stem cells and stem cell regenerative therapy for degenerative disc disease, Adv. Stem Cells, pp.2013-724547, 2013.

K. Andreas, M. Sittinger, and J. Ringe, Toward in situ tissue engineering: chemokine-guided stem cell recruitment, Trends in Biotechnology, vol.32, issue.9, pp.1-10, 2014.
DOI : 10.1016/j.tibtech.2014.06.008

C. Blanpain, Skin regeneration and repair, Nature, vol.4, issue.7289, pp.686-687, 2010.
DOI : 10.1038/464686a

P. S. Eriksson, E. Perfilieva, and T. Björk-eriksson, Neurogenesis in the adult human hippocampus, Nature Medicine, vol.383, issue.11, pp.1313-1317, 1998.
DOI : 10.1038/383624a0

L. Li and T. Xie, STEM CELL NICHE: Structure and Function, Annual Review of Cell and Developmental Biology, vol.21, issue.1, pp.605-631, 2005.
DOI : 10.1146/annurev.cellbio.21.012704.131525

T. Yin, The stem cell niches in bone, Journal of Clinical Investigation, vol.116, issue.5, pp.1195-1201, 2006.
DOI : 10.1172/JCI28568

URL : http://www.jci.org/articles/view/28568/files/pdf

C. Karlsson, M. Thornemo, and H. B. Henriksson, Identification of a stem cell niche in the zone of Ranvier within the knee joint, Journal of Anatomy, vol.24, issue.1, pp.215-355, 2009.
DOI : 10.2106/00004623-200300002-00012

E. Runesson, P. Ackermann, and H. Brisby, Detection of slow-cycling and stem/progenitor cells in different regions of rat Achilles tendon: response to treadmill exercise, Knee Surgery, Sports Traumatology, Arthroscopy, vol.11, issue.7, pp.1694-1703, 2013.
DOI : 10.1186/1471-2474-11-10

S. Turner, B. Birender, and B. Caterson, Viability, growth kinetics and stem cell markers of single and clustered cells in human intervertebral discs: implications for regenerative therapies, European Spine Journal, vol.18, issue.Pt 1, pp.2462-2472, 2014.
DOI : 10.1042/bst0180820

K. Vukusic, J. Asp, and H. B. Henriksson, Physical exercise affects slow cycling cells in the rat heart and reveals a new potential niche area in the atrioventricular junction, Journal of Molecular Histology, vol.137, issue.4-5, pp.46-387, 2015.
DOI : 10.1242/dev.055970

W. C. Chan, T. Y. Au, and V. Tam, Coming together is a beginning: The making of an intervertebral disc, Birth Defects Research Part C: Embryo Today: Reviews, vol.39, issue.1, pp.83-100, 2014.
DOI : 10.1097/BRS.0000000000000174

D. T. Scadden, The stem-cell niche as an entity of action, Nature, vol.16, issue.7097, pp.1075-1079, 2006.
DOI : 10.1016/j.ceb.2004.09.003

R. Shi, F. Wang, and X. Hong, The presence of stem cells in potential stem cell niches of the intervertebral disc region: an in vitro study on rats, European Spine Journal, vol.205, issue.5, pp.2411-2424, 2015.
DOI : 10.1111/j.0021-8782.2004.00352.x

H. Wang, Y. Zhou, and B. Huang, Utilization of Stem Cells in Alginate for Nucleus Pulposus Tissue Engineering, Tissue Engineering Part A, vol.20, issue.5-6, pp.908-920, 2014.
DOI : 10.1089/ten.tea.2012.0703

L. Liu, B. Huang, and C. Li, Characteristics of Stem Cells Derived from the Degenerated Human Intervertebral Disc Cartilage Endplate, Characteristics of stem cells derived from the degenerated human intervertebral disc cartilage endplate, p.26285, 2011.
DOI : 10.1371/journal.pone.0026285.t003

URL : https://doi.org/10.1371/journal.pone.0026285

H. B. Henriksson, N. Papadimitriou, and S. Tschernitz, Indications of that migration of stem cells is influenced by the extra cellular matrix architecture in the mammalian intervertebral disk region, Tissue and Cell, vol.47, issue.5, pp.47-439, 2015.
DOI : 10.1016/j.tice.2015.08.001

H. Barreto-henriksson, A. Lindahl, and E. Skioldebrand, Similar cellular migration patterns from niches in intervertebral disc and in knee-joint regions detected by in situ labeling: an experimental study in the New Zealand white rabbit, Stem Cell Research & Therapy, vol.4, issue.5, 2013.
DOI : 10.1007/s00167-013-2446-7

M. T. Chow and A. D. Luster, Chemokines in Cancer, Cancer Immunology Research, vol.2, issue.12, pp.1125-1131, 2014.
DOI : 10.1158/2326-6066.CIR-14-0160

Z. Jia, P. Yang, and Y. Wu, Comparison of biological characteristics of nucleus pulposus mesenchymal stem cells derived from non-degenerative and degenerative human nucleus pulposus, Experimental and Therapeutic Medicine, vol.13, issue.6, pp.13-3574, 2017.
DOI : 10.3892/etm.2017.4398

X. Li, Y. Tang, and J. Wu, Characteristics and potentials of stem cells derived from human degenerated nucleus pulposus: potential for regeneration of the intervertebral disc, BMC Musculoskeletal Disorders, vol.22, issue.19-20, 2017.
DOI : 10.1089/ten.tea.2016.0230

W. M. Erwin, D. Islam, and E. Eftekarpour, Intervertebral Disc-Derived Stem Cells, Intervertebral disc-derived stem cells, pp.211-216, 2013.
DOI : 10.1097/BRS.0b013e318266a80d

S. Huang, V. Y. Leung, and D. Long, Coupling of small leucine-rich proteoglycans to hypoxic survival of a progenitor cell-like subpopulation in Rhesus Macaque intervertebral disc, Biomaterials, vol.34, issue.28, pp.6548-6558, 2013.
DOI : 10.1016/j.biomaterials.2013.05.027

O. Mizrahi, D. Sheyn, and W. Tawackoli, Nucleus pulposus degeneration alters properties of resident progenitor cells, The Spine Journal, vol.13, issue.7, pp.803-814, 2013.
DOI : 10.1016/j.spinee.2013.02.065

URL : http://europepmc.org/articles/pmc3759825?pdf=render

G. Feng, X. Yang, and H. Shang, Multipotential Differentiation of Human Anulus Fibrosus Cells, The Journal of Bone and Joint Surgery-American Volume, vol.92, issue.3, pp.92-675, 2010.
DOI : 10.2106/JBJS.H.01672

H. E. Gruber, F. E. Riley, and G. L. Hoelscher, Human annulus progenitor cells: Analyses of this viable endogenous cell population, Journal of Orthopaedic Research, vol.26, issue.8, pp.34-1351, 2016.
DOI : 10.1080/08977190802273814

C. Sang, X. Cao, and F. Chen, Differential Characterization of Two Kinds of Stem Cells Isolated from Rabbit Nucleus Pulposus and Annulus Fibrosus, Stem Cells International, vol.2, issue.4, pp.2016-8283257, 2016.
DOI : 10.1016/s0945-053x(01)00125-1

M. Yasen, Q. Fei, and W. C. Hutton, Changes of number of cells expressing proliferation and progenitor cell markers with age in rabbit intervertebral discs, Acta Biochimica et Biophysica Sinica, vol.174, issue.7, pp.45-368, 2013.
DOI : 10.1503/cmaj.060199

A. J. Freemont, A. Watkins, and C. Le-maitre, Current understanding of cellular and molecular events in intervertebral disc degeneration: implications for therapy, The Journal of Pathology, vol.23, issue.4, pp.374-379, 2002.
DOI : 10.1097/00007632-199811150-00016

H. Li, Y. Tao, and C. Liang, Influence of Hypoxia in the Intervertebral Disc on the Biological Behaviors of Rat Adipose- and Nucleus Pulposus-Derived Mesenchymal Stem Cells, Cells Tissues Organs, vol.198, issue.4, pp.266-277, 2013.
DOI : 10.1159/000356505

Y. Tao, C. Liang, and H. Li, Potential of co-culture of nucleus pulposus mesenchymal stem cells and nucleus pulposus cells in hyperosmotic microenvironment for intervertebral disc regeneration, Cell Biology International, vol.5, issue.3, pp.37-826, 2013.
DOI : 10.1038/nprot.2009.238

B. Han, H. Wang, and H. Li, Nucleus Pulposus Mesenchymal Stem Cells in Acidic Conditions Mimicking Degenerative Intervertebral Discs Give Better Performance than Adipose Tissue-Derived Mesenchymal Stem Cells, Cells Tissues Organs, vol.199, issue.5-6, pp.342-352, 2014.
DOI : 10.1159/000369452

D. Sakai, K. Nishimura, and M. Tanaka, Migration of bone marrow???derived cells for endogenous repair in a new tail-looping disc degeneration model in the mouse: a pilot study, The Spine Journal, vol.15, issue.6, pp.1356-1365, 2015.
DOI : 10.1016/j.spinee.2013.07.491

J. F. Ji, B. P. He, and S. T. Dheen, Interactions of Chemokines and Chemokine Receptors Mediate the Migration of Mesenchymal Stem Cells to the Impaired Site in the Brain After Hypoglossal Nerve Injury, Stem Cells, vol.59, issue.3, pp.22-415, 2004.
DOI : 10.1212/WNL.59.4.514

J. Mauney, B. R. Olsen, and V. Volloch, Matrix remodeling as stem cell recruitment event: A novel in vitro model for homing of human bone marrow stromal cells to the site of injury shows crucial role of extracellular collagen matrix, Matrix Biology, vol.29, issue.8, pp.657-663, 2010.
DOI : 10.1016/j.matbio.2010.08.008

A. L. Ponte, E. Marais, and N. Gallay, The In Vitro Migration Capacity of Human Bone Marrow Mesenchymal Stem Cells: Comparison of Chemokine and Growth Factor Chemotactic Activities, Stem Cells, vol.24, issue.7, pp.25-1737, 2007.
DOI : 10.1172/JCI17902

C. Ries, V. Egea, and M. Karow, MMP-2, MT1-MMP, and TIMP-2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by inflammatory cytokines, Blood, vol.109, issue.9, pp.4055-4063, 2007.
DOI : 10.1182/blood-2006-10-051060

S. Illien-jünger, G. Pattappa, and M. Peroglio, Homing of Mesenchymal Stem Cells in Induced Degenerative Intervertebral Discs in a Whole Organ Culture System, Spine, vol.37, issue.22, pp.1865-1873, 2012.
DOI : 10.1097/BRS.0b013e3182544a8a

J. K. Lee, E. H. Schuchman, and H. K. Jin, Soluble CCL5 derived from bone marrowderived mesenchymal stem cells and activated by amyloid ? ameliorates Alzheimer's disease in mice by recruiting bone marrow-induced microglia immune responses, Stem Cells, pp.30-1544, 2012.

J. Stanczyk, M. L. Kowalski, and J. Grzegorczyk, RANTES and Chemotactic Activity in Synovial Fluids From Patients With Rheumatoid Arthritis and Osteoarthritis, Mediators of Inflammation, vol.2005, issue.6, pp.2005-343, 2005.
DOI : 10.1155/MI.2005.343

URL : http://downloads.hindawi.com/journals/mi/2005/764503.pdf

B. P. Purcell, J. A. Elser, and A. Mu, Synergistic effects of SDF-1?? chemokine and hyaluronic acid release from degradable hydrogels on directing bone marrow derived cell homing to the myocardium, Biomaterials, vol.33, issue.31, pp.7849-7857, 2012.
DOI : 10.1016/j.biomaterials.2012.07.005

M. Kaku, M. Kitami, and J. M. Rosales-rocabado, Recruitment of bone marrow-derived cells to the periodontal ligament via the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 axis, Journal of Periodontal Research, vol.59, issue.4, pp.1-9, 2017.
DOI : 10.1016/j.jpor.2015.02.001

L. A. Marquez-curtis and A. , Janowska-wieczorek, Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 Axis, Biomed. Res. Int, pp.2013-561098, 2013.

X. He, J. Ma, and E. Jabbari, Migration of marrow stromal cells in response to sustained release of stromal-derived factor-1alpha from poly(lactide ethylene oxide fumarate ) hydrogels, Int, J. Pharm, pp.390-107, 2010.

C. L. Pereira, R. M. Gonçalves, and M. Peroglio, The effect of hyaluronan-based delivery of stromal cell-derived factor-1 on the recruitment of MSCs in degenerating intervertebral discs, Biomaterials, vol.35, issue.28, pp.8144-8153, 2014.
DOI : 10.1016/j.biomaterials.2014.06.017

H. E. Gruber, E. Marrero, and J. A. Ingram, The chemokine, CXCL16, and its receptor, CXCR6, are constitutively expressed in human annulus fibrosus and expression of CXCL16 is up-regulated by exposure to IL-1?? in vitro, Biotechnic & Histochemistry, vol.35, issue.1, pp.92-99, 2017.
DOI : 10.1177/039463201302600304

K. L. Phillips, N. Chiverton, and A. L. Michael, The cytokine and chemokine expression profile of nucleus pulposus cells: implications for degeneration and regeneration of the intervertebral disc, Arthritis Research & Therapy, vol.15, issue.6, p.213, 2013.
DOI : 10.1002/art.10650

H. Zhang, L. Zhang, and L. Chen, Stromal Cell-derived Factor-1 and its Receptor CXCR4 are Upregulated Expression in Degenerated Intervertebral Discs, International Journal of Medical Sciences, vol.11, issue.3, pp.11-240, 2014.
DOI : 10.7150/ijms.7489

URL : http://www.medsci.org/v11p0240.pdf

S. Liu, H. Liang, and S. Lee, Isolation and identification of stem cells from degenerated human intervertebral discs and their migration characteristics, Acta Biochimica et Biophysica Sinica, vol.35, pp.101-109, 2016.
DOI : 10.1016/j.biomaterials.2014.06.017

H. E. Gruber, G. L. Hoelscher, and J. A. Ingram, Production and expression of RANTES (CCL5) by human disc cells and modulation by IL-1-?? and TNF-?? in 3D culture, Experimental and Molecular Pathology, vol.96, issue.2, pp.96-133, 2014.
DOI : 10.1016/j.yexmp.2014.01.002

S. Kawaguchi, T. Yamashita, and G. Katahira, Chemokine Profile of Herniated Intervertebral Discs Infiltrated With Monocytes and Macrophages, Spine, vol.27, issue.14, pp.1511-1516, 2002.
DOI : 10.1097/00007632-200207150-00006

C. K. Kepler, D. Z. Markova, and F. Dibra, Expression and Relationship of Proinflammatory Chemokine RANTES/CCL5 and Cytokine IL-1?? in Painful Human Intervertebral Discs, Spine, vol.38, issue.11, pp.873-880, 2013.
DOI : 10.1097/BRS.0b013e318285ae08

H. B. Henriksson, E. Svala, and E. Skioldebrand, Support of Concept That Migrating Progenitor Cells From Stem Cell Niches Contribute to Normal Regeneration of the Adult Mammal Intervertebral Disc, Spine, vol.37, issue.9, pp.722-732, 2012.
DOI : 10.1097/BRS.0b013e318231c2f7

I. M. Shapiro and M. V. Risbud, Transcriptional profiling of the nucleus pulposus: say yes to notochord, Arthritis Research & Therapy, vol.12, issue.3, 2010.
DOI : 10.1186/ar3003

URL : https://arthritis-research.biomedcentral.com/track/pdf/10.1186/ar3003?site=arthritis-research.biomedcentral.com

C. R. Lee, D. Sakai, and T. Nakai, A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat, European Spine Journal, vol.11, issue.Pt 1, pp.2174-2185, 2007.
DOI : 10.1016/S0304-4165(02)00390-2

B. M. Minogue, S. M. Richardson, and L. A. Zeef, Transcriptional profiling of bovine intervertebral disc cells: implications for identification of normal and degenerate human intervertebral disc cell phenotypes, Arthritis Research & Therapy, vol.12, issue.1, pp.12-22, 2010.
DOI : 10.1186/ar2929

K. Masuda, Biological repair of the degenerated intervertebral disc by the injection of growth factors, Eur, Spine J, vol.17, pp.441-451, 2008.

]. N. Henry, J. Clouet, and J. L. Bideau, Innovative strategies for intervertebral disc regenerative medicine: From cell therapies to multiscale delivery systems, Biotechnology Advances, vol.36, issue.1, pp.36-281, 2018.
DOI : 10.1016/j.biotechadv.2017.11.009

URL : https://hal.archives-ouvertes.fr/hal-01718260

V. P. Mantripragada and A. C. Jayasuriya, IGF-1 release kinetics from chitosan microparticles fabricated using environmentally benign conditions, Materials Science and Engineering: C, vol.42, pp.506-516, 2014.
DOI : 10.1016/j.msec.2014.05.068

URL : http://europepmc.org/articles/pmc4112056?pdf=render

A. Das, D. A. Barker, and T. Wang, Delivery of Bioactive Lipids from Composite Microgel-Microsphere Injectable Scaffolds Enhances Stem Cell Recruitment and Skeletal Repair, PLoS ONE, vol.108, issue.6, p.101276, 2014.
DOI : 10.1371/journal.pone.0101276.g007

URL : https://doi.org/10.1371/journal.pone.0101276

M. K. Nguyen and E. Alsberg, Bioactive factor delivery strategies from engineered polymer hydrogels for therapeutic medicine, Progress in Polymer Science, vol.39, issue.7, pp.1235-1265, 2014.
DOI : 10.1016/j.progpolymsci.2013.12.001

URL : http://europepmc.org/articles/pmc4167348?pdf=render

S. B. Blanquer, D. W. Grijpma, and A. A. Poot, Delivery systems for the treatment of degenerated intervertebral discs, Advanced Drug Delivery Reviews, vol.84, pp.172-187, 2014.
DOI : 10.1016/j.addr.2014.10.024

URL : https://hal.archives-ouvertes.fr/hal-01833132

N. Suffee, C. Le-visage, and R. Aid-launais, Induction of angiogenesis in a murine model of hindlimb ischemia by RANTES/CCL5 incorporated into polysaccharide microbeads, Sci, 2017.

N. Henry, J. Clouet, and A. Fragale, Pullulan microbeads/Si-HPMC hydrogel injectable system for the sustained delivery of GDF-5 and TGF-??1: new insight into intervertebral disc regenerative medicine, Drug Delivery, vol.1, issue.1, pp.999-1010, 2017.
DOI : 10.1016/j.biomaterials.2015.04.029

URL : https://hal.archives-ouvertes.fr/inserm-01667231

A. Purnama, R. Aid-launais, and O. Haddad, Fucoidan in a 3D scaffold interacts with vascular endothelial growth factor and promotes neovascularization in mice, Drug Delivery and Translational Research, vol.32, issue.1, pp.187-197, 2013.
DOI : 10.1042/BSR20110077

M. Lavergne, M. Derkaoui, and C. Delmau, Porous Polysaccharide-Based Scaffolds for Human Endothelial Progenitor Cells, Macromolecular Bioscience, vol.9, issue.7, pp.901-910, 2012.
DOI : 10.1038/nm0603-653

G. Teixeira, C. L. Pereira, and F. Castro, Anti-inflammatory chitosan/poly-?glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc, Acta Biomater, pp.42-168, 2016.
DOI : 10.1016/j.actbio.2016.06.013

N. Henry, J. Clouet, and C. L. Visage, Silica nanofibers as a new drug delivery system: a study of the protein???silica interactions, Journal of Materials Chemistry B, vol.50, issue.16, pp.2908-2920, 2017.
DOI : 10.1016/j.msec.2015.01.073

URL : https://hal.archives-ouvertes.fr/hal-01602713

C. M. Tran, Z. R. Schoepflin, and D. Z. Markova, CCN2 suppresses catabolic effects of Interleukin-1 beta(IL-1beta) through alpha5beta1 and alphaVbeta3 Integrins in nucleus pulposus cells: implications in intervertebral disc degeneration, J. Biol. Chem, pp.289-7374, 2014.

J. Bedore, A. Leask, and C. A. Séguin, Targeting the extracellular matrix: Matricellular proteins regulate cell???extracellular matrix communication within distinct niches of the intervertebral disc, Matrix Biology, vol.37, pp.124-130, 2014.
DOI : 10.1016/j.matbio.2014.05.005

H. E. Gruber, H. J. Norton, and E. N. Hanley, Anti-Apoptotic Effects of IGF-1 and PDGF on Human Intervertebral Disc Cells In Vitro, Spine, vol.25, issue.17, pp.2153-2157, 2000.
DOI : 10.1097/00007632-200009010-00002

R. Osada, H. Ohshima, and H. Ishihara, Autocrine/paracrine mechanism of insulinlike growth factor-1 secretion, and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs, J. Orthop. Res, pp.14-690, 1996.

H. Pratsinis and D. Kletsas, PDGF, bFGF and IGF-I stimulate the proliferation of intervertebral disc cells in vitro via the activation of the ERK and Akt signaling pathways, European Spine Journal, vol.5, issue.Suppl 15, pp.1858-1866, 2007.
DOI : 10.1016/S0306-3623(98)00105-0

M. Endres, A. Enz, and K. Neumann, P130 Polymer-based tissue engineering of intervertebral disc nucleus pulposus tissue, Osteoarthritis and Cartilage, vol.15, pp.15-120, 2007.
DOI : 10.1016/S1063-4584(07)61485-X

Y. Imai, K. Miyamoto, and H. S. An, Recombinant Human Osteogenic Protein-1 Upregulates Proteoglycan Metabolism of Human Anulus Fibrosus and Nucleus Pulposus Cells, Spine, vol.32, issue.12, pp.1303-1309, 2007.
DOI : 10.1097/BRS.0b013e3180593238

K. Masuda, K. Takegami, and H. An, Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads, Journal of Orthopaedic Research, vol.26, issue.5, pp.922-930, 2003.
DOI : 10.1097/00007632-200111010-00005

K. Miyamoto, K. Masuda, and J. G. Kim, Intradiscal injections of osteogenic protein-1 restore the viscoelastic properties of degenerated intervertebral discs, The Spine Journal, vol.6, issue.6, pp.692-703, 2006.
DOI : 10.1016/j.spinee.2006.04.014

L. Gilbertson, S. Ahn, and P. Teng, The effects of recombinant human bone morphogenetic protein-2, recombinant human bone morphogenetic protein-12, and adenoviral bone morphogenetic protein-12 on matrix synthesis in human annulus fibrosis and nucleus pulposus cells, The Spine Journal, vol.8, issue.3, pp.449-456, 2008.
DOI : 10.1016/j.spinee.2006.11.006

S. , T. Yoon, K. Su-kim, and J. Li, The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro, Spine (Phila. Pa, pp.28-1773, 1976.

J. N. Zara, R. K. Siu, and X. Zhang, Tissue Engineering Part A, vol.17, issue.9-10, pp.1389-1399, 2011.
DOI : 10.1089/ten.tea.2010.0555

N. Willems, F. C. Bach, and S. G. Plomp, Intradiscal application of rhBMP-7 does not induce regeneration in a canine model of spontaneous intervertebral disc degeneration, Arthritis Research & Therapy, vol.229, issue.1, p.17, 2015.
DOI : 10.1002/jcp.24658

K. D. Than, S. U. Rahman, and L. Wang, Intradiscal injection of simvastatin results in radiologic, histologic, and genetic evidence of disc regeneration in a rat model of degenerative disc disease, The Spine Journal, vol.14, issue.6, pp.1017-1028, 2014.
DOI : 10.1016/j.spinee.2013.11.034

F. Mwale, K. Masuda, and R. Pichika, The efficacy of link N as a mediator of repair in a rabbit model of intervertebral disc degeneration, Arthritis Res. Ther, pp.13-120, 2011.

N. Algarni, M. P. Grant, and L. M. Epure, Short Link N Stimulates Intervertebral Disc Repair in a Novel Long-Term Organ Culture Model that Includes the Bony Vertebrae, Tissue Engineering Part A, vol.22, issue.21-22, pp.1252-1257, 2016.
DOI : 10.1089/ten.tea.2016.0115

F. Mwale, H. T. Wang, and P. Roughley, Link N and Mesenchymal Stem Cells Can Induce Regeneration of the Early Degenerate Intervertebral Disc, Tissue Engineering Part A, vol.20, issue.21-22, pp.2942-2949, 2014.
DOI : 10.1089/ten.tea.2013.0749

M. D. Sternlicht and Z. Werb, How Matrix Metalloproteinases Regulate Cell Behavior, Annual Review of Cell and Developmental Biology, vol.17, issue.1, pp.463-516, 2001.
DOI : 10.1146/annurev.cellbio.17.1.463

URL : http://europepmc.org/articles/pmc2792593?pdf=render

B. A. Walter, D. Purmessur, and M. Likhitpanichkul, Inflammatory Kinetics and Efficacy of Anti-inflammatory Treatments on Human Nucleus Pulposus Cells, Spine, vol.40, issue.13, 2015.
DOI : 10.1097/BRS.0000000000000932

URL : http://europepmc.org/articles/pmc4567470?pdf=render

C. L. Le-maitre, J. A. Hoyland, and A. J. Freemont, Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study, Arthritis Research & Therapy, vol.9, issue.4, p.83, 2007.
DOI : 10.1186/ar2282

T. Sainoh, S. Orita, and M. Miyagi, Single intradiscal injection of the interleukin-6 receptor antibody tocilizumab provides short-term relief of discogenic low back pain; prospective comparative cohort study, Journal of Orthopaedic Science, vol.21, issue.1, pp.2-6, 2016.
DOI : 10.1016/j.jos.2015.10.005

H. Tabara, M. Sarkissian, and W. G. Kelly, The rde-1 Gene, RNA Interference, and Transposon Silencing in C. elegans, Cell, vol.99, issue.2, pp.123-132, 1999.
DOI : 10.1016/S0092-8674(00)81644-X

URL : https://doi.org/10.1016/s0092-8674(00)81644-x

K. To, MicroRNA: a prognostic biomarker and a possible druggable target for circumventing multidrug resistance in cancer chemotherapy, Journal of Biomedical Science, vol.20, issue.1, p.99, 2013.
DOI : 10.1038/nature04791

URL : https://jbiomedsci.biomedcentral.com/track/pdf/10.1186/1423-0127-20-99?site=jbiomedsci.biomedcentral.com

P. H. Reddy, J. Williams, and F. Smith, MicroRNAs, aging, cellular senescence, and Alzheimer's disease, Prog, Mol. Biol. Transl. Sci, pp.127-171, 2017.
DOI : 10.1016/bs.pmbts.2016.12.009

]. N. Nouraee and S. J. , Mowla, miRNA therapeutics in cardiovascular diseases: promises and problems, Front. Genet, vol.6, issue.232, 2015.
DOI : 10.3389/fgene.2015.00232

URL : http://journal.frontiersin.org/article/10.3389/fgene.2015.00232/pdf

J. Broderick, P. Zamore, G. Microrna-therapeutics, and . Ther, , pp.1104-1110, 2011.

X. Zhou, L. Chen, and S. Grad, The roles and perspectives of microRNAs as biomarkers for intervertebral disc degeneration, Journal of Tissue Engineering and Regenerative Medicine, vol.47, issue.Suppl 4, pp.3481-3487, 2017.
DOI : 10.1016/j.jbiomech.2014.09.004

F. Lagarce and C. Passirani, Nucleic-Acid Delivery Using Lipid Nanocapsules, Current Pharmaceutical Biotechnology, vol.17, issue.8, pp.723-727, 2017.
DOI : 10.2174/1389201017666160401145206

URL : https://hal.archives-ouvertes.fr/hal-01392476

S. David, P. Resnier, and A. Guillot, siRNA LNCs-a novel platform of lipid nanocapsules for systemic siRNA administration, Eur, J. Pharm. Biopharm, pp.81-448, 2012.

C. K. Sen and S. Ghatak, miRNA Control of Tissue Repair and Regeneration, The American Journal of Pathology, vol.185, issue.10, pp.1-13, 2015.
DOI : 10.1016/j.ajpath.2015.04.001

URL : http://europepmc.org/articles/pmc4607764?pdf=render

N. Babae, M. Bourajjaj, and Y. Liu, Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma, Oncotarget, vol.5, issue.16, pp.6687-6700, 2014.
DOI : 10.18632/oncotarget.2235

URL : http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=2235&path%5B%5D=3670