A. Rubartelli and M. T. Lotze, Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox, Trends in Immunology, vol.28, issue.10, pp.429-436, 2007.
DOI : 10.1016/j.it.2007.08.004

N. Riteau, P. Gasse, L. Fauconnier, A. Gombault, M. Couegnat et al., Receptor in Lung Inflammation and Fibrosis, American Journal of Respiratory and Critical Care Medicine, vol.182, issue.6, pp.774-783, 2010.
DOI : 10.1073/pnas.0902531106

URL : https://hal.archives-ouvertes.fr/hal-00591486

Y. Chen, R. Corriden, Y. Inoue, L. Yip, N. Hashiguchi et al., ATP Release Guides Neutrophil Chemotaxis via P2Y2 and A3 Receptors, Science, vol.314, issue.5806, pp.1792-1795, 2006.
DOI : 10.1126/science.1132559

S. Gorini, G. Callegari, G. Romagnoli, C. Mammi, D. Mavilio et al., ATP secreted by endothelial cells blocks CX3CL1-elicited natural killer cell chemotaxis and cytotoxicity via P2Y11 receptor activation, Blood, vol.116, issue.22, pp.4492-4500, 2010.
DOI : 10.1182/blood-2009-12-260828

P. Pelegrin and A. Surprenant, Pannexin-1 mediates large pore formation and interleukin-1?? release by the ATP-gated P2X7 receptor, The EMBO Journal, vol.312, issue.21, pp.5071-5082, 2006.
DOI : 10.1152/physrev.00015.2002

A. T. Turer and J. A. Hill, Pathogenesis of Myocardial Ischemia-Reperfusion Injury and Rationale for Therapy, The American Journal of Cardiology, vol.106, issue.3, pp.360-368, 2010.
DOI : 10.1016/j.amjcard.2010.03.032

H. K. Eltzschig and T. Eckle, Ischemia and reperfusion???from mechanism to translation, Nature Medicine, vol.65, issue.11, pp.1391-1401, 2011.
DOI : 10.1038/nrd2425

X. Dong, S. Swaminathan, L. A. Bachman, A. J. Croatt, K. A. Nath et al., Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia???reperfusion injury, Kidney International, vol.71, issue.7, pp.619-628, 2007.
DOI : 10.1038/sj.ki.5002132

Y. Maekawa, N. Mizue, A. Chan, Y. Shi, Y. Liu et al., Survival and Cardiac Remodeling After Myocardial Infarction Are Critically Dependent on the Host Innate Immune Interleukin-1 Receptor-Associated Kinase-4 Signaling: A Regulator of Bone Marrow-Derived Dendritic Cells, Circulation, vol.120, issue.14, pp.1401-1414, 2009.
DOI : 10.1161/CIRCULATIONAHA.109.865956

F. Arslan, D. P. De-kleijn, and G. Pasterkamp, Innate immune signaling in cardiac ischemia, Nature Reviews Cardiology, vol.182, issue.5, pp.292-300, 2011.
DOI : 10.4049/jimmunol.0803842

J. Banchereau, F. Briere, C. Caux, J. Davoust, S. Lebecque et al., Immunobiology of Dendritic Cells, Annual Review of Immunology, vol.18, issue.1, pp.767-811, 2000.
DOI : 10.1146/annurev.immunol.18.1.767

A. Tsung, N. Zheng, G. Jeyabalan, K. Izuishi, J. R. Klune et al., Increasing numbers of hepatic dendritic cells promote HMGB1-mediated ischemia-reperfusion injury, Journal of Leukocyte Biology, vol.39, issue.1, pp.119-128, 2007.
DOI : 10.1002/hep.20045

J. Banchereau and R. M. Steinman, Dendritic cells and the control of immunity, Nature, vol.7, issue.6673, pp.245-252, 1998.
DOI : 10.1016/S1074-7613(00)80531-2

N. V. Serbina, T. P. Salazar-mather, C. A. Biron, W. A. Kuziel, and E. G. Pamer, TNF/iNOS-Producing Dendritic Cells Mediate Innate Immune Defense against Bacterial Infection, Immunity, vol.19, issue.1, pp.59-70, 2003.
DOI : 10.1016/S1074-7613(03)00171-7

R. M. Steinman and J. Banchereau, Taking dendritic cells into medicine, Nature, vol.204, issue.7161, pp.419-426, 2007.
DOI : 10.1084/jem.20061011

A. Anzai, T. Anzai, S. Nagai, Y. Maekawa, K. Naito et al., Regulatory Role of Dendritic Cells in Postinfarction Healing and Left Ventricular Remodeling, Circulation, vol.125, issue.10, pp.1234-1245, 2012.
DOI : 10.1161/CIRCULATIONAHA.111.052126

D. G?-und?-uz, S. A. Kasseckert, F. V. Härtel, M. Aslam, Y. Abdallah et al., Accumulation of extracellular ATP protects against acute reperfusion injury in rat heart endothelial cells???, Cardiovascular Research, vol.71, issue.4, pp.764-773, 2006.
DOI : 10.1016/j.cardiores.2006.06.011

A. Rayah, J. M. Kanellopoulos, and F. D. Virgilio, P2 receptors and immunity, Microbes and Infection, vol.14, issue.14, pp.1254-1262, 2012.
DOI : 10.1016/j.micinf.2012.07.006

L. Sala, A. , D. Ferrari, S. Corinti, A. Cavani et al., Extracellular ATP Induces a Distorted Maturation of Dendritic Cells and Inhibits Their Capacity to Initiate Th1 Responses, The Journal of Immunology, vol.166, issue.3, pp.1611-1617, 2001.
DOI : 10.4049/jimmunol.166.3.1611

F. Marteau, N. S. Gonzalez, D. Communi, M. Goldman, J. Boeynaems et al., Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells, Blood, vol.106, issue.12, pp.3860-3866, 2005.
DOI : 10.1182/blood-2005-05-1843

D. Virgilio and F. , Purinergic mechanism in the immune system: A signal of danger for dendritic cells, Purinergic Signalling, vol.21, issue.92, pp.205-209, 2005.
DOI : 10.4049/jimmunol.166.3.1611

M. Schnurr, F. Then, P. Galambos, C. Scholz, B. Siegmund et al., Extracellular ATP and TNF-?? Synergize in the Activation and Maturation of Human Dendritic Cells, The Journal of Immunology, vol.165, issue.8, pp.4704-4709, 2000.
DOI : 10.4049/jimmunol.165.8.4704

S. S. Iyer, W. P. Pulskens, J. J. Sadler, L. M. Butter, G. J. Teske et al., Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl. Acad. Sci. USA, pp.20388-20393, 2009.

B. Jelassi, A. Chantôme, F. Alcaraz-pérez, A. Baroja-mazo, M. L. Cayuela et al., P2X7 receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness, Oncogene, vol.28, issue.18, pp.2108-2122, 2011.
DOI : 10.1016/j.leukres.2004.04.001

URL : https://www.nature.com/articles/onc2010593.pdf

S. Chadet, B. Jelassi, R. Wannous, D. Angoulvant, S. Chevalier et al., The activation of P2Y2 receptors increases MCF-7 breast cancer cells migration through the MEK-ERK1/2 signalling pathway, Carcinogenesis, vol.24, issue.Pt 21, pp.1238-1247, 2014.
DOI : 10.1016/j.ccr.2013.05.008

I. K?-ugelgen, Pharmacological profiles of cloned mammalian P2Y-receptor subtypes, Pharmacology & Therapeutics, vol.110, issue.3, pp.415-432, 2006.
DOI : 10.1016/j.pharmthera.2005.08.014

B. R. Bianchi, K. J. Lynch, E. Touma, W. Niforatos, E. C. Burgard et al., Pharmacological characterization of recombinant human and rat P2X receptor subtypes, European Journal of Pharmacology, vol.376, issue.1-2, pp.127-138, 1999.
DOI : 10.1016/S0014-2999(99)00350-7

S. Beggs, T. Trang, and M. W. Salter, P2X4R+ microglia drive neuropathic pain, Nature Neuroscience, vol.20, issue.8, pp.1068-1073, 2012.
DOI : 10.1016/j.pain.2009.11.015

URL : http://europepmc.org/articles/pmc5023423?pdf=render

D. Virgilio and F. , Liaisons dangereuses: P2X7 and the inflammasome, Trends in Pharmacological Sciences, vol.28, issue.9, pp.465-472, 2007.
DOI : 10.1016/j.tips.2007.07.002

B. R. Kornum, M. Kawashima, J. Faraco, L. Lin, T. J. Rico et al., Common variants in P2RY11 are associated with narcolepsy, Nature Genetics, vol.166, issue.1, pp.66-71, 2011.
DOI : 10.4049/jimmunol.166.12.7172

URL : http://europepmc.org/articles/pmc3019286?pdf=render

M. Sakowicz-burkiewicz, K. Kocbuch, M. Grden, I. Maciejewska, A. Szutowicz et al., High glucose concentration impairs ATP outflow and immunoglobulin production by human peripheral B lymphocytes: Involvement of P2X7 receptor, Immunobiology, vol.218, issue.4, pp.591-601, 2013.
DOI : 10.1016/j.imbio.2012.07.010

F. Wilkin, P. Stordeur, M. Goldman, J. Boeynaems, and B. Robaye, Extracellular adenine nucleotides modulate cytokine production by human monocyte-derived dendritic cells: dual effect on IL-12 and stimulation of IL-10, European Journal of Immunology, vol.32, issue.9, pp.2409-2417, 2002.
DOI : 10.1002/1521-4141(200209)32:9<2409::AID-IMMU2409>3.0.CO;2-H

M. Nian, P. Lee, N. Khaper, and P. Liu, Inflammatory Cytokines and Postmyocardial Infarction Remodeling, Circulation Research, vol.94, issue.12, pp.1543-1553, 2004.
DOI : 10.1161/01.RES.0000130526.20854.fa

URL : https://www.ahajournals.org/doi/pdf/10.1161/01.RES.0000130526.20854.fa

P. C. Low, S. Manzanero, N. Mohannak, V. K. Narayana, T. H. Nguyen et al., PI3K?? inhibition reduces TNF secretion and neuroinflammation in a mouse cerebral stroke model, Nature Communications, vol.297, issue.1, p.3450, 2014.
DOI : 10.1002/glia.10274

URL : https://www.nature.com/articles/ncomms4450.pdf

R. Beigi, E. Kobatake, M. Aizawa, and G. R. Dubyak, Detection of local ATP release from activated platelets using cell surface-attached firefly luciferase, American Journal of Physiology-Cell Physiology, vol.54, issue.34, pp.267-278, 1999.
DOI : 10.1042/bj2850345

M. J. Bours, E. L. Swennen, F. D. Virgilio, B. N. Cronstein, and P. C. Dagnelie, Adenosine 5???-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation, Pharmacology & Therapeutics, vol.112, issue.2, pp.358-404, 2006.
DOI : 10.1016/j.pharmthera.2005.04.013

M. C. Bosseto, P. V. Palma, D. T. Covas, and S. Giorgio, Hypoxia modulates phenotype, inflammatory response, and leishmanial infection of human dendritic cells, APMIS, vol.82, issue.2, pp.108-114, 2010.
DOI : 10.4049/jimmunol.164.11.5858

M. Kawaguchi, M. Takahashi, T. Hata, Y. Kashima, F. Usui et al., Inflammasome Activation of Cardiac Fibroblasts Is Essential for Myocardial Ischemia/Reperfusion Injury, Circulation, vol.123, issue.6, pp.594-604, 2011.
DOI : 10.1161/CIRCULATIONAHA.110.982777

R. M. Mortensen, Immune Cell Modulation of Cardiac Remodeling, Circulation, vol.125, issue.13, pp.1597-1600, 2012.
DOI : 10.1161/CIRCULATIONAHA.112.097832

URL : https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.112.097832

X. Yan, A. Anzai, Y. Katsumata, T. Matsuhashi, K. Ito et al., Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction, Journal of Molecular and Cellular Cardiology, vol.62, pp.24-35, 2013.
DOI : 10.1016/j.yjmcc.2013.04.023

K. Naito, T. Anzai, Y. Sugano, Y. Maekawa, T. Kohno et al., Differential Effects of GM-CSF and G-CSF on Infiltration of Dendritic Cells during Early Left Ventricular Remodeling after Myocardial Infarction, The Journal of Immunology, vol.181, issue.8, pp.5691-5701, 2008.
DOI : 10.4049/jimmunol.181.8.5691

B. M. Hall, CELLS MEDIATING ALLOGRAFT REJECTION, Transplantation, vol.51, issue.6, pp.1141-1151, 1991.
DOI : 10.1097/00007890-199106000-00001

M. Sadeghi, V. Daniel, R. Weimer, M. Wiesel, O. Hergesell et al., Pre-transplant Th1 and post-transplant Th2 cytokine patterns are associated with early acute rejection in renal transplant recipients, Clinical Transplantation, vol.6, issue.2, pp.151-157, 2003.
DOI : 10.1006/bbrc.1995.2438

F. Horn, C. Henze, and K. Heidrich, Interleukin-6 Signal Transduction and Lymphocyte Function, Immunobiology, vol.202, issue.2, pp.151-167, 2000.
DOI : 10.1016/S0171-2985(00)80061-3

Y. Liang, K. Christopher, P. W. Finn, Y. L. Colson, and D. L. Perkins, Graft Produced Interleukin-6 Functions as a Danger Signal and Promotes Rejection After Transplantation, Transplantation, vol.84, issue.6, pp.771-777, 2007.
DOI : 10.1097/01.tp.0000281384.24333.0b

D. K. De-vries, J. H. Lindeman, D. Tsikas, E. De-heer, A. Roos et al., Early Renal Ischemia-Reperfusion Injury in Humans Is Dominated by IL-6 Release from the Allograft, American Journal of Transplantation, vol.35, issue.7, pp.1574-1584, 2009.
DOI : 10.4049/jimmunol.178.3.1845

S. Fischer, A. A. Maclean, M. Liu, J. A. Cardella, A. S. Slutsky et al., Dynamic Changes in Apoptotic and Necrotic Cell Death Correlate with Severity of Ischemia???Reperfusion Injury in Lung Transplantation, American Journal of Respiratory and Critical Care Medicine, vol.146, issue.5, pp.1932-1939, 2000.
DOI : 10.1165/ajrcmb.20.5.3452

W. Rodrigues, M. Carr, D. Ridout, K. Carter, S. L. Hulme et al., Total donor ischemic time: Relationship to early hemodynamics and intensive care morbidity in pediatric cardiac transplant recipients*, Pediatric Critical Care Medicine, vol.12, issue.6, pp.660-666, 2011.
DOI : 10.1097/PCC.0b013e3182192a84

K. Ganeshan and A. Chawla, Metabolic Regulation of Immune Responses, Annual Review of Immunology, vol.32, issue.1, pp.609-634, 2014.
DOI : 10.1146/annurev-immunol-032713-120236

M. C. Brahimi-horn and J. Pouysségur, HIF at a glance, Journal of Cell Science, vol.122, issue.8, pp.1055-1057, 2009.
DOI : 10.1242/jcs.035022

URL : https://hal.archives-ouvertes.fr/hal-00373133

M. Koshiji and L. E. Huang, Dynamic balancing of the dual nature of HIF-1a for cell survival, Cell Cycle, vol.3, pp.853-854, 2004.

P. Rosenberger, J. Khoury, T. Kong, T. Weissm?-uller, A. M. Robinson et al., Identification of vasodilator-stimulated phosphoprotein (VASP) as an HIF-regulated tissue permeability factor during hypoxia, The FASEB Journal, vol.21, issue.10, pp.2613-2621, 2007.
DOI : 10.1165/rcmb.2002-0180OC

W. Zheng, J. Kuhlicke, K. Jäckel, H. K. Eltzschig, A. Singh et al., Hypoxia inducible factor-1 (HIF-1)-mediated repression of cystic fibrosis transmembrane conductance regulator (CFTR) in the intestinal epithelium, The FASEB Journal, vol.23, issue.1, pp.204-213, 2009.
DOI : 10.1053/j.gastro.2007.12.008

V. Ronkainen, R. Skoumal, and P. Tavi, Hypoxia and HIF-1 suppress SERCA2a expression in embryonic cardiac myocytes through two interdependent hypoxia response elements, Journal of Molecular and Cellular Cardiology, vol.50, issue.6, pp.1008-1016, 2011.
DOI : 10.1016/j.yjmcc.2011.02.017

J. Balogh, A. Wihlborg, H. Isackson, B. V. Joshi, K. A. Jacobson et al., Phospholipase C and cAMP-dependent positive inotropic effects of ATP in mouse cardiomyocytes via P2Y-like receptors, Journal of Molecular and Cellular Cardiology, vol.39, issue.2, pp.223-230, 2005.
DOI : 10.1016/j.yjmcc.2005.03.007

Z. Djerada, H. Peyret, S. Dukic, and H. Millart, Extracellular NAADP affords cardioprotection against ischemia and reperfusion injury and involves the P2Y11-like receptor, Biochemical and Biophysical Research Communications, vol.434, issue.3, pp.428-433, 2013.
DOI : 10.1016/j.bbrc.2013.03.089