, HDACi modulate decitabine-induced RIG- 1 and MDA5 expression in MPM cells Meso45 (middle) and Meso96 (down) cells were treated with: VPA 5 mM48 h) in combination or not with decitabine (5-aza) 500 nM (72 h pretreatment) RIG-1 (left) and MDA-5 (right) mRNA expression were measured using real time PCR, Additional file 10: Figure S7

, Lymphocytes obtained by elutriation were treated with decitabine (5-aza) 500 nM (72 h) Figure are examples of results obtained on A) natural killer cells (NK) and B) regulatory T cells (Treg) using flow cytometry. (PDF 281 kb) Additional file 12: Figure S9. Determination of HDAC1 inhibition properties of ODB, Additional file 11: Figure S8. Effect of decitabine on Treg and NK cells NODB, ODH and NODH. Recombinant HDAC1 activity in the presence of increasing doses of ODB, NODB, ODH and NODH were measured using Fluor de Lys® Drug Discovery Assays (Enzo Life Sciences)

C. , APC: Allophycocyanine; AUC: Area under the curve Bovine serum albumin.: Cluster of differentiation 4, 8...; CT: Control; CTA: Cancer testis antigen; DNA: Deoxyribonucleic Acid; DTC Platform: 'Développement et Transfert Clinique' platform; FACS: Fluorescence Activated Cell Sorting; FITC: Fluorescence Iso Thio Cyanate, Abbreviations 5-azaCdR: 5-Aza-2?-deoxycytidine

, IC50: The half maximal inhibitory concentration; IFN?: Interferon-?; IgG1: Immunoglobulin (antibody) G1; IL-2: Interleukin-2; MAGE- A1, MAGE-A3: Melanoma antigen-encoding genes family A, HS: Human Serum

, MPM: Malignant pleural mesothelioma; mRNA: Messenger Ribonucleic Acid; MUC1: Mucin1; NK: Natural killer cells; NODB: 5-(6-Dimethylamino-2- methyl-3-oxo-2,3-dihydrobenzofuran-2-yl)-4methyl-penta-2,4-dienoic acid benzamide; NODH: 5-(6-Dimethylamino-2-methyl-3-oxo-2,3-dihydro benzofuran-2-yl)-4methyl-penta-2,4-dienoic acid hydroxamide; NY-ESO-1: New York Oesophageal Squamous Cell Carcinoma 1; ODB: 4-Methyl-5-(2-methyl-3- oxo-2,3-dihydro-benzofuran-2-yl)-penta-2,4-dienoic acid benzamide, -yl)-penta-2,4-dienoic acid hydroxamide; PBS: Phosphate-Buffered Saline; PD-1: Programmed cell death 1, pp.4-5

P. , Programmed death-ligand 1; PE: Phycorerythrine; PerCP: Peridininchlorophyll-protein Complex Conjugate; RIG-1: Retinoic acid-inducible gene I

, RMFI: relative median fluorescent intensity; RNA: Ribonucleic Acid

J. Wagner, C. Sleggs, and P. Marchand, RPMI 1640 medium: Roswell Park Memorial Institute 1640 medium; RT-PCR: Real Time-Polymerase Chain Reaction ; S.E.M: Standard Error of the Mean Suberoylanilide hydroxamic acid; T-reg: Regulatory T cells; TSG: Tumor suppressor genes; VPA: Valproate; XAGE-1b: X antigen family member 1b References 1, RPLPO: Ribosomal Protein Lateral Stalk Subunit P0 Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province, pp.260-71, 1960.

T. Yap, J. Aerts, and S. Popat, Novel insights into mesothelioma biology and implications for therapy, Nature Reviews Cancer, vol.22, issue.8, pp.475-88, 2017.
DOI : 10.1158/1078-0432.CCR-11-2259

Y. Pan, G. Liu, F. Zhou, B. Su, and Y. Li, DNA methylation profiles in cancer diagnosis and therapeutics, Clinical and Experimental Medicine, vol.9, issue.8, pp.1-14, 2018.
DOI : 10.1186/1476-4598-9-305

X. Zhang, N. Tang, and A. Rishi, Methylation Profile Landscape in Mesothelioma: Possible Implications in Early Detection, Disease Progression, and Therapeutic Options, Methods Mol Biol, vol.1238, pp.235-282, 2015.
DOI : 10.1007/978-1-4939-1804-1_12

M. Fraga, E. Ballestar, and A. Villar-garea, Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer, Nature Genetics, vol.10, issue.4, pp.391-400, 2005.
DOI : 10.1016/S1097-2765(02)00740-2

P. Chi, C. Allis, and G. Wang, Covalent histone modifications ??? miswritten, misinterpreted and mis-erased in human cancers, Nature Reviews Cancer, vol.21, issue.7, pp.457-69, 2010.
DOI : 10.1101/gad.415507

A. Karpf, P. Peterson, and J. Rawlins, Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells, Proceedings of the National Academy of Sciences, vol.8, issue.2, pp.14007-14019, 1999.
DOI : 10.1097/00008390-199804000-00001

L. Sigalotti, S. Coral, and M. Altomonte, Cancer testis antigens expression in mesothelioma: role of DNA methylation and bioimmunotherapeutic implications, British Journal of Cancer, vol.182, issue.6, pp.979-82, 2002.
DOI : 10.1084/jem.182.3.689

J. Weber, M. Salgaller, and D. Samid, Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2?-deoxycytidine, Cancer Res, vol.54, pp.1766-71, 1994.

H. Li, K. Chiappinelli, and A. Guzzetta, Immune regulation by low doses of the DNA methyltransferase inhibitor 5-azacitidine in common human epithelial cancers, Oncotarget, vol.5, issue.3, pp.587-98, 2014.
DOI : 10.18632/oncotarget.1782

D. Roulois, L. Yau, H. Singhania, and R. , DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts, Cell, vol.162, issue.5, pp.961-73, 2015.
DOI : 10.1016/j.cell.2015.07.056

S. Leclercq, F. Gueugnon, and B. Boutin, A 5-aza-2'-deoxycytidine/valproate combination induces cytotoxic T-cell response against mesothelioma, European Respiratory Journal, vol.38, issue.5, pp.1105-1121, 2011.
DOI : 10.1183/09031936.00081310

T. Weiser, Z. Guo, and G. Ohnmacht, Sequential 5-Aza-2???-deoxycytidine-Depsipeptide FR901228 Treatment Induces Apoptosis Preferentially in Cancer Cells and Facilitates Their Recognition by Cytolytic T Lymphocytes Specific for NY-ESO-1, Journal of Immunotherapy, vol.24, issue.2, pp.151-61, 2001.
DOI : 10.1097/00002371-200103000-00010

N. Martinet and P. Bertrand, Interpreting clinical assays for histone deacetylase inhibitors, Cancer Manag Res, vol.3, pp.117-158, 2011.

C. Charrier, J. Clarhaut, and J. Gesson, Synthesis and Modeling of New Benzofuranone Histone Deacetylase Inhibitors that Stimulate Tumor Suppressor Gene Expression, Journal of Medicinal Chemistry, vol.52, issue.9, pp.3112-3117, 2009.
DOI : 10.1021/jm9002439

URL : https://hal.archives-ouvertes.fr/hal-00438795

F. Gueugnon, P. Cartron, and C. Charrier, New histone deacetylase inhibitors improve cisplatin antitumor properties against thoracic cancer cells, Oncotarget, vol.5, issue.12, pp.4504-4519, 2014.
DOI : 10.18632/oncotarget.2056

K. Adachi and K. Tamada, Immune checkpoint blockade opens an avenue of cancer immunotherapy with a potent clinical efficacy, Cancer Science, vol.151, issue.8, pp.945-50, 2015.
DOI : 10.1016/j.imlet.2013.01.008

F. Gueugnon, S. Leclercq, and C. Blanquart, Identification of Novel Markers for the Diagnosis of Malignant Pleural Mesothelioma, The American Journal of Pathology, vol.178, issue.3, pp.1033-1075, 2011.
DOI : 10.1016/j.ajpath.2010.12.014

J. Fonteneau, M. Larsson, and S. Somersan, Generation of high quantities of viral and tumor-specific human CD4+ and CD8+ T-cell clones using peptide pulsed mature dendritic cells, Journal of Immunological Methods, vol.258, issue.1-2, pp.111-137, 2001.
DOI : 10.1016/S0022-1759(01)00477-X

A. Atmaca, S. Al-batran, and A. Maurer, Valproic acid (VPA) in patients with refractory advanced cancer: a dose escalating phase I clinical trial, British Journal of Cancer, vol.8, issue.2, pp.177-82, 2007.
DOI : 10.1016/j.leukres.2004.11.022

URL : http://www.nature.com/bjc/journal/v97/n2/pdf/6603851a.pdf

P. Munster, D. Marchion, and E. Bicaku, Phase I Trial of Histone Deacetylase Inhibition by Valproic Acid Followed by the Topoisomerase II Inhibitor Epirubicin in Advanced Solid Tumors: A Clinical and Translational Study, Journal of Clinical Oncology, vol.25, issue.15, pp.1979-85, 2007.
DOI : 10.1200/JCO.2006.08.6165

W. Kelly, O. Connor, O. Krug, and L. , Phase I Study of an Oral Histone Deacetylase Inhibitor, Suberoylanilide Hydroxamic Acid, in Patients With Advanced Cancer, Journal of Clinical Oncology, vol.23, issue.17, pp.3923-3954, 2005.
DOI : 10.1200/JCO.2005.14.167

E. Rubin, N. Agrawal, and E. Friedman, A Study to Determine the Effects of Food and Multiple Dosing on the Pharmacokinetics of Vorinostat Given Orally to Patients with Advanced Cancer, Clinical Cancer Research, vol.12, issue.23, pp.7039-7084, 2006.
DOI : 10.1158/1078-0432.CCR-06-1802

A. Salmaninejad, M. Zamani, and M. Pourvahedi, Cancer/Testis Antigens: Expression, Regulation, Tumor Invasion, and Use in Immunotherapy of Cancers, Immunological Investigations, vol.28, issue.7, pp.619-659, 2016.
DOI : 10.1158/1078-0432.CCR-07-2003

X. Wang, F. Teng, and L. Kong, PD-L1 expression in human cancers and its association with clinical outcomes, Onco Targets Ther, vol.9, pp.5023-5062, 2016.

A. Karpf, A. Lasek, and T. Ririe, Limited Gene Activation in Tumor and Normal Epithelial Cells Treated with the DNA Methyltransferase Inhibitor 5-Aza-2'-deoxycytidine, Molecular Pharmacology, vol.65, issue.1, pp.18-27, 2004.
DOI : 10.1124/mol.65.1.18

URL : http://molpharm.aspetjournals.org/content/molpharm/65/1/18.full.pdf

A. Lane and B. Chabner, Histone Deacetylase Inhibitors in Cancer Therapy, Journal of Clinical Oncology, vol.27, issue.32, pp.5459-68, 2009.
DOI : 10.1200/JCO.2009.22.1291

L. Kristensen, H. Nielsen, and L. Hansen, Epigenetics and cancer treatment, European Journal of Pharmacology, vol.625, issue.1-3, pp.131-173, 2009.
DOI : 10.1016/j.ejphar.2009.10.011

C. Blanquart, M. Francois, and C. Charrier, Pharmacological Characterization of Histone Deacetylase Inhibitor and Tumor Cell-Growth Inhibition Properties of New Benzofuranone Compounds, Current Cancer Drug Targets, vol.11, issue.8, pp.919-947, 2011.
DOI : 10.2174/156800911797264761

M. Fakih, L. Pendyala, and G. Fetterly, A Phase I, Pharmacokinetic and Pharmacodynamic Study on Vorinostat in Combination with 5-Fluorouracil, Leucovorin, and Oxaliplatin in Patients with Refractory Colorectal Cancer, Clinical Cancer Research, vol.15, issue.9, pp.3189-95, 2009.
DOI : 10.1158/1078-0432.CCR-08-2999

URL : http://clincancerres.aacrjournals.org/content/clincanres/15/9/3189.full.pdf

I. Gojo, M. Tan, and H. Fang, Translational Phase I Trial of Vorinostat (Suberoylanilide Hydroxamic Acid) Combined with Cytarabine and Etoposide in Patients with Relapsed, Refractory, or High-Risk Acute Myeloid Leukemia, Clinical Cancer Research, vol.19, issue.7, pp.1838-51, 2013.
DOI : 10.1158/1078-0432.CCR-12-3165

S. Floess, J. Freyer, and C. Siewert, Epigenetic Control of the foxp3 Locus in Regulatory T Cells, PLoS Biology, vol.31, issue.2, p.38, 2007.
DOI : 10.1371/journal.pbio.0050038.st001

A. Victor, C. Weigel, and S. Scoville, Epigenetic and Posttranscriptional Regulation of CD16 Expression during Human NK Cell Development, The Journal of Immunology, vol.134, issue.2, pp.565-72, 2018.
DOI : 10.1182/blood-2009-04-215491

A. Thomas, A. Rajan, and E. Szabo, A Phase I/II Trial of Belinostat in Combination with Cisplatin, Doxorubicin, and Cyclophosphamide in Thymic Epithelial Tumors: A Clinical and Translational Study, Clinical Cancer Research, vol.20, issue.21, pp.5392-402, 2014.
DOI : 10.1158/1078-0432.CCR-14-0968

C. Govindaraj, P. Tan, and P. Walker, Regulatory T Cells via the Combined Action of Azacitidine and the HDAC Inhibitor, Panobinostat for Clinical Benefit in Acute Myeloid Leukemia Patients, Clinical Cancer Research, vol.20, issue.3, pp.724-759, 2014.
DOI : 10.1158/1078-0432.CCR-13-1576

R. Tao, E. De-zoeten, and E. Ozkaynak, Deacetylase inhibition promotes the generation and function of regulatory T cells, Nature Medicine, vol.90, issue.11, pp.1299-307, 2007.
DOI : 10.4049/jimmunol.166.2.973

L. Shen and R. Pili, Class I histone deacetylase inhibition is a novel mechanism to target regulatory T cells in immunotherapy, OncoImmunology, vol.1, issue.6, pp.948-50, 2012.
DOI : 10.1016/j.canlet.2009.02.019

URL : http://www.tandfonline.com/doi/pdf/10.4161/onci.20306?needAccess=true

M. Kelly-sell, Y. Kim, and S. Straus, The histone deacetylase inhibitor, romidepsin, suppresses cellular immune functions of cutaneous T-cell lymphoma patients, American Journal of Hematology, vol.7, issue.4, pp.354-60, 2012.
DOI : 10.3816/CLM.2007.n.037

S. Zhu, C. Denman, and Z. Cobanoglu, The Narrow-Spectrum HDAC Inhibitor Entinostat Enhances NKG2D Expression Without NK Cell Toxicity, Leading to Enhanced Recognition of Cancer Cells, Pharmaceutical Research, vol.3, issue.3, pp.779-92, 2015.
DOI : 10.2174/1568009611313040005

URL : http://europepmc.org/articles/pmc4014531?pdf=render

H. Ogbomo, M. Michaelis, and J. Kreuter, Histone deacetylase inhibitors suppress natural killer cell cytolytic activity, FEBS Letters, vol.99, issue.7, pp.1317-1339, 2007.
DOI : 10.1182/blood.V99.10.3661

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2007.02.045/pdf

S. Kim, K. Iizuka, and H. Aguila, In vivo natural killer cell activities revealed by natural killer cell-deficient mice, Proceedings of the National Academy of Sciences, vol.180, issue.3, pp.2731-2737, 2000.
DOI : 10.1084/jem.180.3.907

URL : http://www.pnas.org/content/97/6/2731.full.pdf

J. Orange, Natural killer cell deficiency, Journal of Allergy and Clinical Immunology, vol.132, issue.3, pp.515-540, 2013.
DOI : 10.1016/j.jaci.2013.07.020

A. Lopez-soto, S. Gonzalez, and M. Smyth, Control of Metastasis by NK Cells, Cancer Cell, vol.32, issue.2, pp.135-54, 2017.
DOI : 10.1016/j.ccell.2017.06.009

P. Cartron, C. Blanquart, and E. Hervouet, gene expression, Molecular Oncology, vol.659, issue.3, pp.452-63, 2013.
DOI : 10.1016/j.mrrev.2008.02.004

H. Nakashima, T. Nguyen, and E. Chiocca, Combining HDAC inhibitors with oncolytic virotherapy for cancer therapy, Oncolytic Virother, vol.4, pp.183-91, 2015.

R. Mazzone, C. Zwergel, and A. Mai, Epi-drugs in combination with immunotherapy: a new avenue to improve anticancer efficacy, Clinical Epigenetics, vol.12, issue.Suppl, p.59, 2017.
DOI : 10.1158/1078-0432.CCR-06-0883

URL : http://doi.org/10.1186/s13148-017-0358-y