Testosterone-induced acne fulminans in twins with Kallmann’s syndrome
Mélanie Saint-Jean, Cécile Frenard, Maëlle Le Bras, Guillaume Aubin, Stéphane Corvec, Brigitte Dréno

To cite this version:

HAL Id: inserm-01820709
https://www.hal.inserm.fr/inserm-01820709
Submitted on 22 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Testosterone-induced acne fulminans in twins with Kallmann’s syndrome

Mélanie Saint-Jean, MD, a,b Cécile Frenard, MD, a,b Maëlle Le Bras, MD, a Guillaume Ghislain Aubin, PharmD, d,e Stéphane Corvec, PharmD, PhD, d,e and Brigitte Dréno, MD, PhD a,b
Nantes and Saint-Herblain, France

Key words: acne fulminans; Kallmann’s syndrome; testosterone; twins.

INTRODUCTION
Acne fulminans is a rare and severe form of acne characterized by the development of painful and inflammatory nodules on the face, chest, and back. Systemic signs are associated with the onset, including fever, chills, and musculoskeletal pain. Erythema nodosum, liver or spleen enlargement, myositis, or aseptic bone involvement have been reported more rarely. Its etiology remains unknown. It is assumed that a strong activation of the cutaneous innate immunity induced by Propionibacterium acnes antigens could be involved. Another hypothesis is that it could be a dysregulation of some receptors expressed by sebaceous glands and keratinocytes, in particular, the androgen receptors. Moreover, these abnormalities could be genetically determined.

CASE REPORT
We report the case of an 18-year-old patient seen in the outpatient setting for severe acne on his back. In 2013, given the presence of delayed puberty and anosmia, the diagnosis of Kallmann syndrome was established and confirmed by olfactometry. The serum testosterone level was 0.3 ng/mL (normal range, 3-10 ng/mL); the luteinizing hormone level was 0.2 IU/L (normal range, 1.7-8.6 IU); and the follicle-stimulating hormone level was 0.1 IU/L (normal range, 2.0 - 14.1 IU/L). His twin brother also had Kallmann syndrome. The twins were born from a biamniotic pregnancy with one placenta, so they could be mono- or dizygotic twins. We noted a family history of acne in the father and oldest brother. The twin brothers had been treated with monthly injections of testosterone for delayed puberty starting at the age of 17. Under treatment, the testosterone level reached normal range. Nine months later, nodular and necrotic acne lesions suddenly developed on the patient’s back (Fig 1) associated with

Fig 1. Acne fulminans on the back with nodular and necrotic lesions.

From the Department of Dermatology, a and INSERM U892, b University Hospital Hôtel-Dieu; Department of Endocrinology, b University Hospital Laennec; Bacteriology and Hygiene Department, d University Hospital Hôtel-Dieu; and Laboratory of Clinical and Experimental Therapeutics of Infections, e University of Nantes.

Funding sources: None.

Conflicts of interest: S. Corvec is consultant for Galderma. The other authors have no conflict to declare.

Correspondence to: Pr Brigitte Dréno, MD, PhD, Department of Dermatology, University Hospital Hôtel-Dieu, 44093 Nantes cedex, France. E-mail: brigitte.dreno@wanadoo.fr.
2352-5126 © 2014 by the American Academy of Dermatology, Inc. Published by Elsevier, Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
http://dx.doi.org/10.1016/j.jdcr.2014.10.005
moderate acne on the face without nodules. The
development of these lesions was associated with
general malaise but no fevers or musculoskeletal pain.
The injections of testosterone were discontinued.
Simultaneously, severe nodular acne developed on
the back of the twin brother, which was treated in
another center using lymecycline, 300 mg/d, and
topical treatment. Given the interest of these rare
cases, cultures of the back lesions were taken. Results
showed the presence of fully susceptible *P. acnes*
belonging to phylotype II in our patient and phylo-
type IB in his twin. Corticosteroid therapy (0.5 mg/kg/
d) was initiated, resulting in disappearance of necrotic
lesions at 1 month, allowing initiating tapering of
corticosteroids and introducing a very low dose of
isotretinoin (5 mg/d = 0.06 mg/kg/d). After 2 months
of isotretinoin treatment, the severe ulcerative acne
lesions were significantly reduced (by more than 50%)
leaving atrophic scars. Corticosteroids were discon-
tinued, and isotretinoin dose was increased to 10 mg/
d. The treatment is still ongoing. Because acne
fulminans is a rare adverse event of testosterone
therapy, the case was reported to the clinical phar-
camology department.

DISCUSSION

A few cases of testosterone-induced acne
fulminans have been described in the literature
(Table I), but this is the first case reported in
twins. These types of cases have been described
only in 2 situations: self-medication of anabolic
steroids in bodybuilders or testosterone treatment
given for excessively tall stature.1-4 Acne fulminans
appeared between 3 and 18 months after initiating
the treatment with testosterone in 5 cases and after
the end of the treatment in 1 case.3 This delay could
be due to the time necessary for the testosterone
treatment to accumulate in the blood to a level
triggering skin androgen receptors. The 2 genetic
cases are similar to that of our patient. The first one
was a 19-year-old boy with Klinefelter syndrome1
and the second one was a 12-year-old boy
with Marfan syndrome,4 both with tall stature and
treated with testosterone. In a large prospective
study, 23 boys treated with androgens (Triolandren)
in the context of an expected body height of more
than 200 cm (but without a known genetic dis-
order), severe acne developed in 5 patients and
progressed toward acne fulminans in 1.6

Table I. Demographic and clinical data of patients with testosterone-induced acne fulminans

<table>
<thead>
<tr>
<th>Reference</th>
<th>Sex</th>
<th>No. of patients</th>
<th>Age</th>
<th>Clinical context</th>
<th>Therapeutic regimen</th>
<th>Therapy received for acne fulminans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic Disorders</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hartmann and Burg, 19891</td>
<td>M</td>
<td>1</td>
<td>19</td>
<td>Klinefelter syndrome</td>
<td>Testosterone enantat 500 mg every 2 wk over 18 mo</td>
<td>Isotretinoin therapy over 16 weeks</td>
</tr>
<tr>
<td>Wollina et al, 20054</td>
<td>M</td>
<td>1</td>
<td>12</td>
<td>Marfan syndrome</td>
<td>Testosterone 50 mg every 2 wk for 6 mo</td>
<td>Clindamycin 300 mg, prednisolone 1 mg/kg, and isotretinoin 0.5 mg/kg. Prednisolone switched for dapsone 100 mg/d (disagreement of patient’s mother to continue steroid treatment)</td>
</tr>
<tr>
<td>Current case</td>
<td>M</td>
<td>2</td>
<td>18</td>
<td>Kallmann syndrome</td>
<td>Testosterone 250 mg once a mo over 10 mo</td>
<td>Systemic corticosteroid 0.5 mg/kg/d, isotretinoin 0.06 mg/kg/d</td>
</tr>
<tr>
<td>Tall Stature Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traupe et al, 19882</td>
<td>M</td>
<td>3</td>
<td>13-16</td>
<td>Excessively tall stature</td>
<td>High doses of testosterone</td>
<td>Oral isotretinoin and topical steroid (2 cases) Systemic corticosteroid (1 case)</td>
</tr>
<tr>
<td>Weimann and Bohles, 19993</td>
<td>M</td>
<td>1</td>
<td>13</td>
<td>Hereditary tall stature treated with high dose of testosterone</td>
<td>Testosterone 250 mg once a wk over 6 mo</td>
<td>Isotretinoin therapy (0.3 mg/kg/d), methylprednisolone and cefaclor</td>
</tr>
</tbody>
</table>

to these results, the estimated incidence is approximately 4%.

The identification of 2 different phylotypes of *P. acnes* in our cases does not suggest a relationship between acne fulminans and a specific *P. acnes* cluster. It could be assumed that the treatment increased the level of free testosterone in the blood and thus in the skin. This testosterone increase could have activated the skin androgen receptors. In the context of twins, a genetic factor (mutation in the androgen receptor gene) could have played a role. The possible role of genetic factors influencing acne is based first on the observation that a family history of acne could be associated with an increased risk of acne. Second, a large twin study including 458 pairs of monozygotic and 1099 pairs of dizygotic twins found that 81% of the acne variance was attributable to additive genetic effects. Three reports of acne fulminans in twins are published in the literature. The first report presented 14-year-old monozygotic twin boys born in Tenerife (Spain) with no family history of acne fulminans. The second publication detailed the case of a different set of 15-year-old twin boys, also from Tenerife, who both had acne fulminans. The outcome was favorable with isotretinoin treatment in both patients and prednisolone treatment in the first twin. A third case was reported in a brother and sister with the same human leukocyte antigen type, supporting a genetic predisposition. Our observation of acne fulminans in twins triggered by testosterone treatment strengthens the hypothesis of a genetic abnormality in connection with skin androgen receptors.

REFERENCES