M. Katoh, Functional and cancer genomics of ASXL family members, British Journal of Cancer, vol.486, issue.2
DOI : 10.1128/MCB.00396-10

URL : http://www.nature.com/bjc/journal/v109/n2/pdf/bjc2013281a.pdf

, Br J Cancer, vol.109, pp.299-306, 2013.

O. Abdel-wahab and A. Dey, The ASXL???BAP1 axis: new factors in myelopoiesis, cancer and epigenetics, Leukemia, vol.125, issue.1, pp.10-15, 2012.
DOI : 10.1038/nature07423

V. Gelsi-boyer, V. Trouplin, and J. Adélaïde, in myelodysplastic syndromes and chronic myelomonocytic leukaemia, British Journal of Haematology, vol.279, issue.Suppl, pp.788-800, 2009.
DOI : 10.1111/j.1365-2141.1982.tb08475.x

V. Gelsi-boyer, M. Brecqueville, and R. Devillier, Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases, Journal of Hematology & Oncology, vol.5, issue.1, p.12, 2012.
DOI : 10.1182/blood-2009-07-235358

URL : https://hal.archives-ouvertes.fr/inserm-00698796

J. Micol, N. Duployez, and N. Boissel, Frequent ASXL2 mutations [5] in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocations High number of [6] additional genetic lesions in acute myeloid leukemia with t(8;21)/ RUNX1-RUNX1T1: frequency and impact on clinical outcome The Cancer Genome Atlas Research Network Genomic and [7] epigenomic landscapes of adult de novo acute myeloid leukemia, Blood Leukemia N Engl J Med, vol.12428368, pp.1445-14491449, 2013.

K. Metzeler, ASXL genes and RUNX1: an intimate connection?, Blood, vol.124, issue.9, pp.1382-1383, 2014.
DOI : 10.1182/blood-2014-07-586073

URL : http://www.bloodjournal.org/content/124/9/1382.full.pdf

E. Cerami, J. Gao, and U. Dogrusoz, The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data: Figure 1., Cancer Discovery, vol.2, issue.5, pp.401-404, 2012.
DOI : 10.1158/2159-8290.CD-12-0095

M. Bainbridge, H. Hu, and D. Muzny, De novo truncating mutations in ASXL3 are associated with a novel clinical phenotype with similarities to Bohring-Opitz syndrome, Genome Medicine, vol.5, issue.2, p.11, 2013.
DOI : 10.1371/journal.pone.0004750

J. Bendl, J. Stourac, and O. Salanda, PredictSNP: Robust and Accurate Consensus Classifier for Prediction of Disease-Related Mutations, PLoS Computational Biology, vol.40, issue.1, p.1003440, 2014.
DOI : 10.1371/journal.pcbi.1003440.s021

U. Park, S. Yoon, and T. Park, Additional Sex Comb-like (ASXL) Proteins 1 and 2 Play Opposite Roles in Adipogenesis via Reciprocal Regulation of Peroxisome Proliferator-activated Receptor ??, Journal of Biological Chemistry, vol.6, issue.2, pp.1354-1363, 2010.
DOI : 10.1128/MCB.25.22.9985-9995.2005

, Supplementary material available online Supplementary Table 1