W. Foulkes, I. Smith, and J. Reis-filho, Triple-Negative Breast Cancer, New England Journal of Medicine, vol.363, issue.20, pp.1938-1986, 2010.
DOI : 10.1056/NEJMra1001389

C. Perou, T. Sorlie, M. Eisen, M. Van-de-rijn, S. Jeffrey et al., Molecular portraits of human breast tumours, Nature, vol.278, issue.6797, pp.747-52, 2000.
DOI : 10.1038/35000501

T. Sorlie, C. Perou, R. Tibshirani, T. Aas, S. Geisler et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications, Proceedings of the National Academy of Sciences, vol.179, issue.1, pp.10869-74, 2001.
DOI : 10.1002/(SICI)1096-9896(199605)179:1<31::AID-PATH523>3.0.CO;2-O

A. Prat and C. Perou, Deconstructing the molecular portraits of breast cancer, Molecular Oncology, vol.9, issue.7-8, pp.5-23, 2011.
DOI : 10.1007/BF02616069

J. Herschkowitz, K. Simin, V. Weigman, I. Mikaelian, J. Usary et al., Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors, Genome Biology, vol.8, issue.5, p.76, 2007.
DOI : 10.1186/gb-2007-8-5-r76

A. Prat, J. Parker, O. Karginova, C. Fan, C. Livasy et al., Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer, Breast Cancer Research, vol.15, issue.1, p.68, 2010.
DOI : 10.1038/nm0809-842

Z. Hu, C. Fan, D. Oh, J. Marron, X. He et al., The molecular portraits of breast tumors are conserved across microarray platform, BMC Genomics, vol.7, issue.1, p.96, 2006.
DOI : 10.1186/1471-2164-7-96

X. Chen, J. Li, W. Gray, B. Lehmann, J. Bauer et al., TNBCtype: A Subtyping Tool for Triple-Negative Breast Cancer, Cancer Informatics, vol.11, pp.147-56, 2012.
DOI : 10.4137/CIN.S9983

R. Sabatier, P. Finetti, N. Cervera, E. Lambaudie, B. Esterni et al., A gene expression signature identifies two prognostic subgroups of basal breast cancer, Breast Cancer Research and Treatment, vol.280, issue.3, pp.407-427, 2011.
DOI : 10.1074/jbc.M504249200

URL : https://hal.archives-ouvertes.fr/hal-00583558

R. Sabatier, P. Finetti, A. J. Guille, A. Borg, J. Chaffanet et al., Down-Regulation of ECRG4, a Candidate Tumor Suppressor Gene, in Human Breast Cancer, PLoS ONE, vol.6, issue.11, p.27656, 2011.
DOI : 10.1371/journal.pone.0027656.s003

T. Sorlie, R. Tibshirani, J. Parker, T. Hasties, J. Marron et al., Repeated observation of breast tumor subtypes in independent gene expression data sets, Proceedings of the National Academy of Sciences, vol.59, issue.14, pp.8418-8441, 2003.
DOI : 10.1016/S0140-6736(02)11087-7

A. Teschendorff, A. Miremadi, S. Pinder, I. Ellis, and C. Caldas, An immune response gene expression module identifies a good prognosis subtype in estrogen receptor negative breast cancer, Genome Biology, vol.8, issue.8, p.157, 2007.
DOI : 10.1186/gb-2007-8-8-r157

URL : http://doi.org/10.1186/gb-2007-8-8-r157

Z. Hu, C. Fan, C. Livasy, X. He, D. Oh et al., A compact VEGF signature associated with distant metastases and poor outcomes, BMC Medicine, vol.68, issue.4, p.9, 2009.
DOI : 10.1158/0008-5472.CAN-07-2017

URL : https://bmcmedicine.biomedcentral.com/track/pdf/10.1186/1741-7015-7-9?site=bmcmedicine.biomedcentral.com

J. Parker, M. Mullins, M. Cheang, S. Leung, D. Voduc et al., Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes, Journal of Clinical Oncology, vol.27, issue.8, pp.1160-1167, 2009.
DOI : 10.1200/JCO.2008.18.1370

URL : http://europepmc.org/articles/pmc2667820?pdf=render

A. Rody, U. Holtrich, L. Pusztai, C. Liedtke, R. Gaetje et al., T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers, Breast Cancer Research, vol.10, issue.2, p.15, 2009.
DOI : 10.1186/bcr2124

URL : https://breast-cancer-research.biomedcentral.com/track/pdf/10.1186/bcr2234?site=breast-cancer-research.biomedcentral.com

T. Dexter, D. Sims, C. Mitsopoulos, A. Mackay, A. Grigoriadis et al., Genomic distance entrained clustering and regression modelling highlights interacting genomic regions contributing to proliferation in breast cancer, BMC Systems Biology, vol.4, issue.1, p.127, 2010.
DOI : 10.1186/1752-0509-4-127

URL : https://bmcsystbiol.biomedcentral.com/track/pdf/10.1186/1752-0509-4-127?site=bmcsystbiol.biomedcentral.com

M. Beyer, M. Mallmann, J. Xue, A. Staratschek-jox, D. Vorholt et al., High-Resolution Transcriptome of Human Macrophages, PLoS ONE, vol.7, issue.9, p.45466, 2012.
DOI : 10.1371/journal.pone.0045466.s016

URL : https://doi.org/10.1371/journal.pone.0045466

B. Lehmann, J. Bauer, X. Chen, M. Sanders, A. Chakravarthy et al., Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies, Journal of Clinical Investigation, vol.121, issue.7, pp.2750-60, 2011.
DOI : 10.1172/JCI45014DS1

D. Huang, B. Sherman, and R. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nature Protocols, vol.99, issue.1, pp.44-57, 2009.
DOI : 10.6026/97320630002428

D. Huang, B. Sherman, and R. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Research, vol.8, issue.1, pp.1-13, 2009.
DOI : 10.1186/1471-2105-8-9

URL : https://academic.oup.com/nar/article-pdf/37/1/1/17059338/gkn923.pdf

E. Eden, R. Navon, I. Steinfeld, D. Lipson, and Z. Yakhini, GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists, BMC Bioinformatics, vol.10, issue.1, p.48, 2009.
DOI : 10.1186/1471-2105-10-48

URL : http://doi.org/10.1186/1471-2105-10-48

J. Chen, E. Bardes, B. Aronow, and A. Jegga, ToppGene Suite for gene list enrichment analysis and candidate gene prioritization, Nucleic Acids Research, vol.18, issue.8, pp.305-316, 2009.
DOI : 10.1093/hmg/ddp041

URL : https://academic.oup.com/nar/article-pdf/37/suppl_2/W305/3956724/gkp427.pdf

R. Team, R: a language and environment for statistical computing. R Foundation for Statistical Computing, 2014.

T. Nielsen, F. Hsu, K. Jensen, M. Cheang, G. Karaca et al., Immunohistochemical and Clinical Characterization of the Basal-Like Subtype of Invasive Breast Carcinoma, Clinical Cancer Research, vol.10, issue.16, pp.5367-74, 2004.
DOI : 10.1158/1078-0432.CCR-04-0220

URL : http://clincancerres.aacrjournals.org/content/clincanres/10/16/5367.full.pdf

R. Bhargava, S. Beriwal, K. Mcmanus, and D. Dabbs, CK5 Is More Sensitive Than CK5/6 in Identifying the ???Basal-like??? Phenotype of Breast Carcinoma, American Journal of Clinical Pathology, vol.130, issue.5, pp.724-754, 2008.

A. Alshareeda, D. Soria, J. Garibaldi, E. Rakha, C. Nolan et al., Characteristics of basal cytokeratin expression in breast cancer, Breast Cancer Research and Treatment, vol.16, issue.3, pp.23-37, 2013.
DOI : 10.1158/1055-9965.EPI-06-0806

B. Weigelt, A. Mackay, R. Natrajan, R. Tan, D. Dowsett et al., Breast cancer molecular profiling with single sample predictors: a retrospective analysis, The Lancet Oncology, vol.11, issue.4, pp.339-388, 2010.
DOI : 10.1016/S1470-2045(10)70008-5

URL : https://doi.org/10.1016/s1470-2045(10)70008-5

B. Ghabach, W. Anderson, R. Curtis, M. Huycke, J. Lavigne et al., Adenoid cystic carcinoma of the breast in the United States (1977 to 2006): a population-based cohort study, Breast Cancer Research, vol.18, issue.Pt 2, p.54, 1977.
DOI : 10.1158/1055-9965.EPI-09-0301

H. Masuda, K. Baggerly, Y. Wang, Y. Zhang, A. Gonzalez-angulo et al., Differential Response to Neoadjuvant Chemotherapy Among 7 Triple-Negative Breast Cancer Molecular Subtypes, Clinical Cancer Research, vol.19, issue.19, pp.5533-5573, 2013.
DOI : 10.1158/1078-0432.CCR-13-0799

URL : http://clincancerres.aacrjournals.org/content/clincanres/19/19/5533.full.pdf

A. Prat, B. Adamo, M. Cheang, C. Anders, L. Carey et al., Molecular Characterization of Basal-Like and Non-Basal-Like Triple-Negative Breast Cancer, The Oncologist, vol.18, issue.2, pp.123-156, 2013.
DOI : 10.1634/theoncologist.2012-0397

URL : http://theoncologist.alphamedpress.org/content/18/2/123.full.pdf

M. Burstein, A. Tsimelzon, G. Poage, K. Covington, A. Contreras et al., Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-Negative Breast Cancer, Clinical Cancer Research, vol.21, issue.7, pp.1-11, 2015.
DOI : 10.1158/1078-0432.CCR-14-0432

URL : http://clincancerres.aacrjournals.org/content/clincanres/21/7/1688.full.pdf

A. El-rehim, D. Pinder, S. Paish, C. Bell, J. Blamey et al., Expression of luminal and basal cytokeratins in human breast carcinoma, The Journal of Pathology, vol.203, issue.2, pp.661-71, 2004.
DOI : 10.1002/path.1559

R. Salgado, C. Denkert, S. Demaria, N. Sirtaine, F. Klauschen et al., The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014, Annals of Oncology, vol.32, issue.6030, pp.259-71, 2014.
DOI : 10.1126/science.1198704

G. Finak, N. Bertos, F. Pepin, S. Sadekova, M. Souleimanova et al., Stromal gene expression predicts clinical outcome in breast cancer, Nature Medicine, vol.25, issue.5, pp.518-545, 2008.
DOI : 10.4049/jimmunol.170.6.3369

D. Quail and J. Joyce, Microenvironmental regulation of tumor progression and metastasis, Nature Medicine, vol.87, issue.11, pp.1423-1460, 2013.
DOI : 10.1016/j.ccr.2013.02.013

URL : http://europepmc.org/articles/pmc3954707?pdf=render

E. Obeid, R. Nanda, Y. Fu, and O. Olopade, The role of tumor-associated macrophages in breast cancer progression, International Journal of Oncology, vol.43, issue.1, pp.5-12, 2013.
DOI : 10.3892/ijo.2013.1938

S. Loi, S. Michiels, R. Salgado, N. Sirtaine, V. Jose et al., Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial, Annals of Oncology, vol.29, issue.9816, pp.1544-50, 2014.
DOI : 10.1158/0008-5472.SABCS13-S1-05

URL : https://academic.oup.com/annonc/article-pdf/25/8/1544/16703237/mdu112.pdf

S. Adams, R. Gray, S. Demaria, L. Goldstein, E. Perez et al., Prognostic Value of Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancers From Two Phase III Randomized Adjuvant Breast Cancer Trials: ECOG 2197 and ECOG 1199, Journal of Clinical Oncology, vol.32, issue.27, p.491, 2014.
DOI : 10.1200/JCO.2013.55.0491

B. Qian and J. Pollard, Macrophage Diversity Enhances Tumor Progression and Metastasis, Cell, vol.141, issue.1, pp.39-51, 2010.
DOI : 10.1016/j.cell.2010.03.014

URL : https://doi.org/10.1016/j.cell.2010.03.014

P. Murray, J. Allen, S. Biswas, E. Fisher, D. Gilroy et al., Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines, Immunity, vol.41, issue.1, pp.14-20, 2014.
DOI : 10.1016/j.immuni.2014.06.008

URL : https://doi.org/10.1016/j.immuni.2014.07.009

S. Gordon and F. Martinez, Alternative Activation of Macrophages: Mechanism and Functions, Immunity, vol.32, issue.5, pp.593-604, 2010.
DOI : 10.1016/j.immuni.2010.05.007

URL : https://doi.org/10.1016/j.immuni.2010.05.007

T. Lawrence and G. Natoli, Transcriptional regulation of macrophage polarization: enabling diversity with identity, Nature Reviews Immunology, vol.204, issue.11, pp.750-61, 2011.
DOI : 10.1084/jem.20070075

V. Gocheva, H. Wang, B. Gadea, T. Shree, K. Hunter et al., IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion, Genes & Development, vol.24, issue.3, pp.241-55, 2010.
DOI : 10.1101/gad.1874010

URL : http://genesdev.cshlp.org/content/24/3/241.full.pdf

M. Heusinkveld and S. Van-der-burg, Identification and manipulation of tumor associated macrophages in human cancers, Journal of Translational Medicine, vol.9, issue.1, p.216, 2011.
DOI : 10.1186/1479-5876-9-216

URL : https://translational-medicine.biomedcentral.com/track/pdf/10.1186/1479-5876-9-216?site=translational-medicine.biomedcentral.com

Y. Luo, H. Zhou, J. Krueger, C. Kaplan, S. Lee et al., Targeting tumor-associated macrophages as a novel strategy against breast cancer, Journal of Clinical Investigation, vol.116, issue.8, pp.2132-2173, 2006.
DOI : 10.1172/JCI27648DS1

URL : http://europepmc.org/articles/pmc1513049?pdf=render

G. Pickert, H. Lim, A. Weigert, A. Häussler, T. Myrczek et al., Inhibition of GTP cyclohydrolase attenuates tumor growth by reducing angiogenesis and M2-like polarization of tumor associated macrophages, International Journal of Cancer, vol.107, issue.Pt 1, pp.591-604, 2013.
DOI : 10.1073/pnas.1002404107

URL : http://onlinelibrary.wiley.com/doi/10.1002/ijc.27706/pdf

A. Beck, I. Espinosa, E. B. Li, R. Montgomery, K. Zhu et al., The Macrophage Colony-Stimulating Factor 1 Response Signature in Breast Carcinoma, Clinical Cancer Research, vol.15, issue.3, pp.778-87, 2009.
DOI : 10.1158/1078-0432.CCR-08-1283

URL : http://clincancerres.aacrjournals.org/content/clincanres/15/3/778.full.pdf

M. Campbell, N. Tonlaar, E. Garwood, D. Huo, D. Moore et al., Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome, Breast Cancer Research and Treatment, vol.24, issue.3, pp.703-714, 2011.
DOI : 10.1200/JCO.2005.04.5518

URL : http://europepmc.org/articles/pmc4657137?pdf=render

C. Medrek, F. Ponten, K. Jirström, and K. Leandersson, The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients, BMC Cancer, vol.8, issue.8, p.306, 2012.
DOI : 10.1038/nrc2444

P. Chaturvedi, D. Gilkes, N. Takano, and G. Semenza, Hypoxia-inducible factordependent signaling between triple-negative breast cancer cells and mesenchymal stem cells promotes macrophages recruitment, Proc Natl Acad Sci U S A, vol.11, pp.2120-2129, 2014.
DOI : 10.1073/pnas.1406655111

URL : http://www.pnas.org/content/111/20/E2120.full.pdf

T. Karn, L. Pusztai, U. Holtrich, T. Iwamoto, C. Shiang et al., Homogeneous Datasets of Triple Negative Breast Cancers Enable the Identification of Novel Prognostic and Predictive Signatures, PLoS ONE, vol.11, issue.4, p.28403, 2011.
DOI : 10.1371/journal.pone.0028403.s020

P. Jézéquel, M. Campone, W. Gouraud, C. Guérin-charbonnel, C. Leux et al., bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer, Breast Cancer Research and Treatment, vol.11, issue.Database Issue, pp.765-75, 2012.
DOI : 10.1186/bcr2344

F. André, M. Dieci, P. Dubsky, C. Sotiriou, G. Curigliano et al., Molecular Pathways: Involvement of Immune Pathways in the Therapeutic Response and Outcome in Breast Cancer, Clinical Cancer Research, vol.19, issue.1, pp.28-33, 2013.
DOI : 10.1158/1078-0432.CCR-11-2701

A. Abbas, K. Wolslegel, D. Seshasayee, Z. Modrusan, and H. Clark, Deconvolution of Blood Microarray Data Identifies Cellular Activation Patterns in Systemic Lupus Erythematosus, PLoS ONE, vol.4, issue.7, p.6098, 2009.
DOI : 10.1371/journal.pone.0006098.s008

URL : https://doi.org/10.1371/journal.pone.0006098

C. Shannon, R. Balshaw, R. Ng, J. Wilson-mcmanus, P. Keown et al., Two-Stage, In Silico Deconvolution of the Lymphocyte Compartment of the Peripheral Whole Blood Transcriptome in the Context of Acute Kidney Allograft Rejection, PLoS ONE, vol.338, issue.4, p.95224, 2014.
DOI : 10.1371/journal.pone.0095224.s006