H. Inaba, M. Greaves, and C. Mullighan, Acute lymphoblastic leukaemia, The Lancet, vol.381, issue.9881, pp.1943-1955, 2013.
DOI : 10.1016/S0140-6736(12)62187-4

R. Bassan and D. Hoelzer, Modern Therapy of Acute Lymphoblastic Leukemia, Journal of Clinical Oncology, vol.29, issue.5, pp.532-543, 2011.
DOI : 10.1200/JCO.2010.30.1382

J. Zhang, L. Ding, L. Holmfeldt, G. Wu, S. Heatley et al., The genetic basis of early T-cell precursor acute lymphoblastic leukaemia, Nature, vol.19, issue.7380, pp.157-163, 2012.
DOI : 10.1101/gr.092759.109

O. Bandapalli, S. Schuessele, J. Kunz, T. Rausch, A. Stutz et al., The activating STAT5B N642H mutation is a common abnormality in pediatric T-cell acute lymphoblastic leukemia and confers a higher risk of relapse, Haematologica, vol.99, issue.10, pp.188-92, 2014.
DOI : 10.3324/haematol.2014.104992

P. Van-vlierberghe and A. Ferrando, The molecular basis of T cell acute lymphoblastic leukemia, Journal of Clinical Investigation, vol.122, issue.10, pp.3398-3406, 2012.
DOI : 10.1172/JCI61269

L. Sarmento, V. Povoa, R. Nascimento, G. Real, I. Antunes et al., CHK1 overexpression in T-cell acute lymphoblastic leukemia is essential for proliferation and survival by preventing excessive replication stress, Oncogene, vol.28, issue.23, pp.2978-90, 2015.
DOI : 10.1038/leu.2013.369

M. Kontro, H. Kuusanmaki, S. Eldfors, T. Burmeister, E. Andersson et al., Novel activating STAT5B mutations as putative drivers of T-cell acute lymphoblastic leukemia, Leukemia, vol.71, issue.8, pp.1738-1742, 2014.
DOI : 10.1074/jbc.M408464200

L. Lhermitte, B. Abdelali, R. Villarese, P. Bedjaoui, N. Guillemot et al., Receptor kinase profiles identify a rationale for multitarget kinase inhibition in immature T-ALL, Leukemia, vol.90, issue.2, pp.305-314, 2013.
DOI : 10.1182/blood-2009-03-209247

URL : https://hal.archives-ouvertes.fr/hal-00739998

F. Buontempo, E. Orsini, L. Martins, I. Antunes, A. Lonetti et al., Cytotoxic activity of the casein kinase 2 inhibitor CX-4945 against T-cell acute lymphoblastic leukemia: targeting the unfolded protein response signaling, Leukemia, vol.110, issue.3, pp.543-553, 2014.
DOI : 10.1182/blood-2006-11-053728

A. Lonetti, I. Antunes, F. Chiarini, E. Orsini, F. Buontempo et al., Activity of the pan-class I phosphoinositide 3-kinase inhibitor NVP-BKM120 in T-cell acute lymphoblastic leukemia, Leukemia, vol.12, issue.6, pp.1196-1206, 2014.
DOI : 10.1158/2159-8290.CD-11-0249

Z. Cao, W. Henzel, and X. Gao, IRAK: A Kinase Associated with the Interleukin-1 Receptor, Science, vol.271, issue.5252, pp.1128-1131, 1996.
DOI : 10.1126/science.271.5252.1128

S. Flannery and A. Bowie, The interleukin-1 receptor-associated kinases: Critical regulators of innate immune signalling, Biochemical Pharmacology, vol.80, issue.12, pp.1981-1991, 2010.
DOI : 10.1016/j.bcp.2010.06.020

G. Rhyasen, L. Bolanos, J. Fang, A. Jerez, M. Wunderlich et al., Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer cell, pp.90-104, 2013.

L. Beverly and D. Starczynowski, IRAK1: oncotarget in MDS and AML, Oncotarget, vol.5, issue.7, pp.1699-1700, 2014.
DOI : 10.18632/oncotarget.1880

C. Jimenez, E. Sebastian, M. Chillon, G. P. , M. Hernandez et al., MYD88 L265P is a marker highly characteristic of, but not restricted to, Waldenstr??m???s macroglobulinemia, Leukemia, vol.21, issue.8, pp.1722-1728, 2013.
DOI : 10.3816/CLM.2006.n.013

D. Yang, W. Chen, J. Xiong, C. Sherrod, D. Henry et al., Interleukin 1 receptor-associated kinase 1 (IRAK1) mutation is a common, essential driver for Kaposi sarcoma herpesvirus lymphoma, Proceedings of the National Academy of Sciences, vol.407, issue.6803, pp.4762-4770, 2014.
DOI : 10.1038/35035083

G. Rhyasen, L. Bolanos, and D. Starczynowski, Differential IRAK signaling in hematologic malignancies, Experimental Hematology, vol.41, issue.12, pp.1005-1007, 2013.
DOI : 10.1016/j.exphem.2013.09.008

V. Ngo, R. Young, R. Schmitz, S. Jhavar, X. W. Lim et al., Oncogenically active MYD88 mutations in human lymphoma, Nature, vol.206, issue.7332, pp.115-119, 2011.
DOI : 10.1084/jem.20090528

S. Riml, S. Schmidt, M. Ausserlechner, S. Geley, and R. Kofler, Glucocorticoid receptor heterozygosity combined with lack of receptor auto-induction causes glucocorticoid resistance in Jurkat acute lymphoblastic leukemia cells, Cell Death & Differentiation, vol.153, issue.S1, pp.65-72, 2004.
DOI : 10.1083/jcb.153.1.137

J. Powers, S. Li, J. Jaen, J. Liu, N. Walker et al., Discovery and initial SAR of inhibitors of interleukin-1 receptor-associated kinase-4, Bioorganic & Medicinal Chemistry Letters, vol.16, issue.11, pp.2842-2845, 2006.
DOI : 10.1016/j.bmcl.2006.03.020

Z. Wang, H. Wesche, T. Stevens, N. Walker, and W. Yeh, IRAK-4 Inhibitors for Inflammation, Current Topics in Medicinal Chemistry, vol.9, issue.8, pp.724-737, 2009.
DOI : 10.2174/156802609789044407

E. Coustan-smith, C. Mullighan, M. Onciu, F. Behm, S. Raimondi et al., Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia, The Lancet Oncology, vol.10, issue.2, pp.147-156, 2009.
DOI : 10.1016/S1470-2045(08)70314-0

F. Breitenbuecher, B. Markova, S. Kasper, B. Carius, T. Stauder et al., A novel molecular mechanism of primary resistance to FLT3-kinase inhibitors in AML, Blood, vol.113, issue.17, pp.4063-4073, 2009.
DOI : 10.1182/blood-2007-11-126664

J. Knop and M. Martin, Effects of IL-1 receptor-associated kinase (IRAK) expression on IL-1 signaling are independent of its kinase activity, FEBS Letters, vol.272, issue.1, pp.81-85, 1999.
DOI : 10.1074/jbc.272.46.29167

X. Li, M. Commane, Z. Jiang, and G. Stark, IL-1-induced NF??B and c-Jun N-terminal kinase (JNK) activation diverge at IL-1 receptor-associated kinase (IRAK), Proceedings of the National Academy of Sciences, vol.273, issue.20, pp.4461-4465, 2001.
DOI : 10.1074/jbc.273.20.12203

B. Maschera, K. Ray, K. Burns, and F. Volpe, Overexpression of an enzymically inactive interleukin-1-receptor-associated kinase activates nuclear factor-kappaB. The Biochemical journal, pp.227-231, 1999.

P. Moynagh, The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling, Trends in Immunology, vol.30, issue.1, pp.33-42, 2009.
DOI : 10.1016/j.it.2008.10.001

K. Taganov, M. Boldin, K. Chang, and D. Baltimore, NF-??B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses, Proceedings of the National Academy of Sciences, vol.21, issue.19, pp.12481-12486, 2006.
DOI : 10.1093/emboj/cdf505

T. Vilimas, J. Mascarenhas, T. Palomero, M. Mandal, S. Buonamici et al., Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nature medicine, pp.70-77, 2007.

M. Eisen, P. Spellman, P. Brown, and D. Botstein, Cluster analysis and display of genome-wide expression patterns, Proceedings of the National Academy of Sciences, vol.24, issue.2, pp.14863-14868, 1998.
DOI : 10.1016/0092-8674(81)90326-3

V. Asnafi, K. Beldjord, E. Boulanger, B. Comba, L. Tutour et al., Analysis of TCR, pTalpha , and RAG-1 in T-acute lymphoblastic leukemias improves understanding of early human T-lymphoid lineage commitment, Blood, vol.101, issue.7, pp.2693-2703, 2003.
DOI : 10.1182/blood-2002-08-2438