R. Siegel, J. Ma, Z. Zou, and A. Jemal, Cancer statistics, 2014, CA: A Cancer Journal for Clinicians, vol.112, issue.suppl 5, pp.9-29, 2014.
DOI : 10.1002/cncr.23228

M. Malvezzi, P. Bertuccio, F. Levi, C. Vecchia, and E. Negri, European cancer mortality predictions for the year 2013, Annals of Oncology, vol.5, issue.3, pp.792-800, 2013.
DOI : 10.2217/fon.09.134

J. Soyka, M. Muster, D. Schmid, B. Seifert, U. Schick et al., Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer, European Journal of Nuclear Medicine and Molecular Imaging, vol.47, issue.6, pp.936-979, 2012.
DOI : 10.1016/j.eururo.2011.07.060

M. Picchio, A. Briganti, S. Fanti, A. Heidenreich, B. Krause et al., The Role of Choline Positron Emission Tomography/Computed Tomography in the Management of Patients with Prostate-Specific Antigen Progression After Radical Treatment of Prostate Cancer, European Urology, vol.59, issue.1, pp.51-60, 2011.
DOI : 10.1016/j.eururo.2010.09.004

A. Heidenreich, P. Bastian, J. Bellmunt, M. Bolla, S. Joniau et al., EAU Guidelines on Prostate Cancer. Part II: Treatment of Advanced, Relapsing, and Castration-Resistant Prostate Cancer, European Urology, vol.65, issue.2, pp.467-79, 2014.
DOI : 10.1016/j.eururo.2013.11.002

S. Punnen, M. Cooperberg, D. Amico, A. Karakiewicz, P. Moul et al., Management of Biochemical Recurrence After Primary Treatment of Prostate Cancer: A Systematic Review of the Literature, European Urology, vol.64, issue.6, pp.905-920, 2013.
DOI : 10.1016/j.eururo.2013.05.025

C. Kane, C. Amling, P. Johnstone, N. Pak, R. Lance et al., Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy, Urology, vol.61, issue.3, pp.607-618, 2003.
DOI : 10.1016/S0090-4295(02)02411-1

A. Sciarra, V. Panebianco, S. Salciccia, S. Cattarino, D. Lisi et al., Modern role of magnetic resonance and spectroscopy in the imaging of prostate cancer, Urologic Oncology: Seminars and Original Investigations, vol.29, issue.1, pp.12-20, 2009.
DOI : 10.1016/j.urolonc.2009.06.001

G. Giovacchini, M. Picchio, E. Coradeschi, V. Bettinardi, L. Gianolli et al., Predictive factors of [11C]choline PET/CT in patients with biochemical failure after radical prostatectomy, European Journal of Nuclear Medicine and Molecular Imaging, vol.26, issue.2, pp.301-310, 2009.
DOI : 10.1016/j.urolonc.2007.04.006

P. Castellucci, C. Fuccio, C. Nanni, I. Santi, A. Rizzello et al., Influence of Trigger PSA and PSA Kinetics on 11C-Choline PET/CT Detection Rate in Patients with Biochemical Relapse After Radical Prostatectomy, Journal of Nuclear Medicine, vol.50, issue.9, pp.1394-400, 2009.
DOI : 10.2967/jnumed.108.061507

S. Kwee, M. Coel, and J. Lim, Detection of recurrent prostate cancer with 18F-fluorocholine PET/CT in relation to PSA level at the time of imaging, Annals of Nuclear Medicine, vol.32, issue.Suppl 1, pp.501-508, 2012.
DOI : 10.1097/MNM.0b013e32834b76fa

M. Marzola, S. Chondrogiannis, A. Ferretti, G. Grassetto, L. Rampin et al., Role of 18F-Choline PET/CT in Biochemically Relapsed Prostate Cancer After Radical Prostatectomy, Clinical Nuclear Medicine, vol.38, issue.1, pp.26-32, 2013.
DOI : 10.1097/RLU.0b013e318266cc38

G. Giovacchini, M. Picchio, R. Parra, A. Briganti, L. Gianolli et al., Prostate-Specific Antigen Velocity Versus Prostate-Specific Antigen Doubling Time for Prediction of 11C Choline PET/CT in Prostate Cancer Patients With Biochemical Failure After Radical Prostatectomy, Clinical Nuclear Medicine, vol.37, issue.4, pp.325-356, 2012.
DOI : 10.1097/RLU.0b013e31823363b0

M. Beheshti, S. Haim, R. Zakavi, M. Steinmair, P. Waldenberger et al., Impact of 18F-Choline PET/CT in Prostate Cancer Patients with Biochemical Recurrence: Influence of Androgen Deprivation Therapy and Correlation with PSA Kinetics, Journal of Nuclear Medicine, vol.54, issue.6, pp.833-873, 2013.
DOI : 10.2967/jnumed.112.110148

B. Detti, S. Scoccianti, D. Franceschini, S. Cipressi, S. Cassani et al., Predictive factors of [18F]-Choline PET/CT in 170 patients with increasing PSA after primary radical treatment, Journal of Cancer Research and Clinical Oncology, vol.1, issue.5, pp.521-529, 2013.
DOI : 10.1146/annurev.nu.01.070181.000523

M. Rybalov, A. Breeuwsma, A. Leliveld, J. Pruim, R. Dierckx et al., Impact of total PSA, PSA doubling time and PSA velocity on detection rates of 11C-Choline positron emission tomography in recurrent prostate cancer, World Journal of Urology, vol.52, issue.2, pp.319-342, 2013.
DOI : 10.1016/j.eururo.2007.03.032

P. Castellucci, C. Fuccio, D. Rubello, R. Schiavina, I. Santi et al., Is there a role for 11C-choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase <1.5??ng/ml?, European Journal of Nuclear Medicine and Molecular Imaging, vol.37, issue.4, pp.55-63, 2011.
DOI : 10.1148/radiology.219.2.r01ma20432

V. Graute, N. Jansen, C. Ubleis, M. Seitz, M. Hartenbach et al., Relationship between PSA kinetics and [18F]fluorocholine PET/CT detection rates of recurrence in patients with prostate cancer after total prostatectomy, European Journal of Nuclear Medicine and Molecular Imaging, vol.35, issue.Suppl 1, pp.271-82, 2012.
DOI : 10.1007/s00259-008-0716-2

M. Sloan-kettering-cancer and . Center, Prostate Cancer Nomograms: PSA Doubling Time Memorial Sloan-Kettering Cancer Center, 2014.

D. Vassiliev, R. Krasikova, O. Kutznetsova, O. Federova, and M. Nader, S i m p l e H P L C m e t h o d f o r t h e d e t e c t i o n o f N , N dimethylaminoethanol in the preparation of [N-methyl-11C] choline, Eur J Nucl Med Mol Imaging, vol.30, issue.2, p.342, 2003.

D. Schmid, H. John, R. Zweifel, T. Cservenyak, G. Westera et al., Fluorocholine PET/CT in Patients with Prostate Cancer: Initial Experience, Radiology, vol.235, issue.2, pp.623-631, 2005.
DOI : 10.1148/radiol.2352040494

D. Oprea-lager, A. Vincent, R. Van-moorselaar, W. Gerritsen, A. Van-den-eertwegh et al., Dual-Phase PET-CT to Differentiate [18F]Fluoromethylcholine Uptake in Reactive and Malignant Lymph Nodes in Patients with Prostate Cancer, PLoS ONE, vol.154, issue.2, p.48430, 2012.
DOI : 10.1371/journal.pone.0048430.t003

URL : https://doi.org/10.1371/journal.pone.0048430

J. Mertens, A. Dobbeleir, H. Ham, D. Asseler, Y. Goethals et al., Standardized added metabolic activity (SAM): a partial volume independent marker of total lesion glycolysis in liver metastases, European Journal of Nuclear Medicine and Molecular Imaging, vol.33, issue.9, pp.1441-1449, 2012.
DOI : 10.1007/s00259-006-0133-3

C. Brogsitter, K. Zöphel, and J. Kotzerke, 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients, European Journal of Nuclear Medicine and Molecular Imaging, vol.24, issue.S1, pp.18-27, 2013.
DOI : 10.1200/JCO.2005.03.5279

, FDA approves 11C-choline for PET in prostate cancer, J Nucl Med, vol.53, issue.12, p.11, 2012.

I. Brenot-rossi, Mise au point??: TEP-choline et cancer de la prostate, Progr??s en Urologie, vol.24, issue.1, pp.3-8, 2014.
DOI : 10.1016/j.purol.2013.07.016

F. Ceci, K. Herrmann, P. Castellucci, T. Graziani, C. Bluemel et al., Impact of 11C-choline PET/CT on clinical decision making in recurrent prostate cancer: results from a retrospective two-centre trial, European Journal of Nuclear Medicine and Molecular Imaging, vol.41, issue.5, pp.2222-2253, 2014.
DOI : 10.1007/s00259-013-2655-9

G. Giovacchini, M. Picchio, R. Garcia-parra, A. Briganti, F. Abdollah et al., 11C-Choline PET/CT Predicts Prostate Cancer-Specific Survival in Patients with Biochemical Failure During Androgen-Deprivation Therapy, Journal of Nuclear Medicine, vol.55, issue.2, pp.233-274, 2014.
DOI : 10.2967/jnumed.113.123380

G. Giovacchini, E. Incerti, P. Mapelli, M. Kirienko, A. Briganti et al., [11C]Choline PET/CT predicts survival in hormone-naive prostate cancer patients with biochemical failure after radical prostatectomy, European Journal of Nuclear Medicine and Molecular Imaging, vol.99, issue.6, pp.877-84, 2015.
DOI : 10.1016/j.radonc.2011.05.005

A. Breeuwsma, M. Rybalov, A. Leliveld, J. Pruim, and I. De-jong, c-choline PET-CT with time to treatment and disease-specific survival in men with recurrent prostate cancer after radical prostatectomy., Journal of Clinical Oncology, vol.29, issue.7_suppl, pp.440-446, 2012.
DOI : 10.1200/jco.2011.29.7_suppl.123

D. Visvikis, M. Hatt, F. Tixier, C. Le-rest, and C. , The age of reason for FDG PET image-derived indices, European Journal of Nuclear Medicine and Molecular Imaging, vol.25, issue.3, pp.1670-1672, 2012.
DOI : 10.1038/nbt1306

URL : https://hal.archives-ouvertes.fr/inserm-00733622

N. Krak, R. Boellaard, O. Hoekstra, J. Twisk, C. Hoekstra et al., Effects of ROI definition and reconstruction method on quantitative outcome and applicability in a response monitoring trial, European Journal of Nuclear Medicine and Molecular Imaging, vol.26, issue.3, pp.294-301, 2005.
DOI : 10.1148/radiology.196.1.7784562

J. Mertens, D. Bruyne, S. Van-damme, N. Smeets, P. Ceelen et al., Standardized added metabolic activity (SAM) IN 18F-FDG PET assessment of treatment response in colorectal liver metastases, European Journal of Nuclear Medicine and Molecular Imaging, vol.38, issue.Suppl 1, pp.1214-1236, 2013.
DOI : 10.1007/s00259-010-1688-6

S. Larson, Y. Erdi, T. Akhurst, M. Mazumdar, H. Macapinlac et al., Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging The Visual Response Score and the Change in Total Lesion Glycolysis, Clinical Positron Imaging, vol.2, issue.3, pp.159-71, 1999.
DOI : 10.1016/S1095-0397(99)00016-3

J. Fleming, L. Tossici-bolt, M. Guy, and P. Kemp, Comment on Mertens et al.: standardized added metabolic activity (SAM): a partial volume independent marker of total lesion glycolysis in liver metastases, European Journal of Nuclear Medicine and Molecular Imaging, vol.38, issue.8, pp.788-797, 2013.
DOI : 10.1007/s00259-011-1801-5

U. Mahmood, 2014 SNMMI highlights lecture: oncology, J Nucl Med, vol.55, issue.11, pp.9-24, 2014.