M. Dreher, W. Liu, and C. Michelich, Tumor Vascular Permeability, Accumulation, and Penetration of Macromolecular Drug Carriers, JNCI: Journal of the National Cancer Institute, vol.98, issue.5, pp.335-379, 2006.
DOI : 10.1038/nrd1033

URL : https://academic.oup.com/jnci/article-pdf/98/5/335/7688386/djj070.pdf

T. Inai, M. Mancuso, and H. Hashizume, Inhibition of Vascular Endothelial Growth Factor (VEGF) Signaling in Cancer Causes Loss of Endothelial Fenestrations, Regression of Tumor Vessels, and Appearance of Basement Membrane Ghosts, The American Journal of Pathology, vol.165, issue.1, pp.35-52, 2004.
DOI : 10.1016/S0002-9440(10)63273-7

P. Sapieha, K. Zaniolo, and D. Hamel, L???offre et la demande??: l???influence du m??tabolisme ??nerg??tique sur l???angiogen??se, m??decine/sciences, vol.25, issue.4, pp.346-354, 2009.
DOI : 10.1051/medsci/2009254346

E. Gothie and J. Pouyssegur, HIF-1 : r??gulateur central de l???hypoxie, m??decine/sciences, vol.18, issue.1, pp.70-78, 2002.
DOI : 10.1051/medsci/200218170

C. Calabrese, H. Poppleton, and M. Kocak, A Perivascular Niche for Brain Tumor Stem Cells, Cancer Cell, vol.11, issue.1, pp.69-82, 2007.
DOI : 10.1016/j.ccr.2006.11.020

URL : https://doi.org/10.1016/j.ccr.2006.11.020

E. Galan-moya, L. Guelte, A. Fernandes, and E. , Secreted factors from brain endothelial cells maintain glioblastoma stem-like cell expansion through the mTOR pathway, EMBO reports, vol.19, issue.5, pp.470-476, 2011.
DOI : 10.1038/sj.onc.1208311

URL : http://embor.embopress.org/content/embor/12/5/470.full.pdf

M. Paez-ribes, E. Allen, and J. Hudock, Antiangiogenic Therapy Elicits Malignant Progression of Tumors to Increased Local Invasion and Distant Metastasis, Cancer Cell, vol.15, issue.3, pp.220-251, 2009.
DOI : 10.1016/j.ccr.2009.01.027

J. Ebos, C. Lee, and W. Cruz-munoz, Accelerated Metastasis after Short-Term Treatment with a Potent Inhibitor of Tumor Angiogenesis, Cancer Cell, vol.15, issue.3, pp.232-241, 2009.
DOI : 10.1016/j.ccr.2009.01.021

URL : https://doi.org/10.1016/j.ccr.2009.01.021

P. Carmeliet and R. Jain, Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases, Nature Reviews Drug Discovery, vol.7, issue.6, pp.417-444, 2011.
DOI : 10.1038/nmeth.1475

R. 4. Suchting, S. Freitas, C. Le-noble, and F. , The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching, Proceedings of the National Academy of Sciences, vol.76, issue.1, pp.3225-3255, 2007.
DOI : 10.1046/j.1471-4159.2001.00012.x

URL : http://www.pnas.org/content/104/9/3225.full.pdf

L. Jakobsson, C. Franco, and K. Bentley, Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting, Nature Cell Biology, vol.174, issue.10, pp.943-53, 2010.
DOI : 10.1038/ncb2103

T. Tammela, G. Zarkada, and E. Wallgard, Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation, Nature, vol.196, issue.7204, pp.656-60, 2008.
DOI : 10.1161/01.RES.88.6.623

L. Phng, F. Stanchi, and G. H. , Filopodia are dispensable for endothelial tip cell guidance, Development, vol.140, issue.19, pp.4031-4071, 2013.
DOI : 10.1242/dev.097352

URL : http://dev.biologists.org/content/140/19/4031.full.pdf

J. Gavard and J. Gutkind, VEGF controls endothelial-cell permeability by promoting the ??-arrestin-dependent endocytosis of VE-cadherin, Nature Cell Biology, vol.280, issue.11, pp.1223-1257, 2006.
DOI : 10.1074/jbc.M505568200

L. Guelte, A. Galan-moya, E. Dwyer, and J. , Semaphorin 3A elevates endothelial cell permeability through PP2A inactivation, Journal of Cell Science, vol.119, issue.17, pp.4137-4183, 2012.
DOI : 10.1038/sj.onc.1208311

URL : https://hal.archives-ouvertes.fr/hal-01541442

J. Dwyer, J. Hebda, L. Guelte, and A. , Glioblastoma Cell-Secreted Interleukin-8 Induces Brain Endothelial Cell Permeability via CXCR2, PLoS ONE, vol.7, issue.9, p.45562, 2012.
DOI : 10.1371/journal.pone.0045562.t001

URL : https://doi.org/10.1371/journal.pone.0045562

K. Bentley, C. Franco, and A. Philippides, The role of differential VE-cadherin dynamics in cell rearrangement during angiogenesis, Nature Cell Biology, vol.4, issue.4, pp.309-330, 2014.
DOI : 10.1038/nprot.2009.89

D. Bock, K. Georgiadou, M. Schoors, and S. , Role of PFKFB3-driven glycolysis in vessel sprouting, Cell, vol.154, pp.651-63, 2013.

M. Iruela-arispe and G. Davis, Cellular and Molecular Mechanisms of Vascular Lumen Formation, Developmental Cell, vol.16, issue.2, pp.222-253, 2009.
DOI : 10.1016/j.devcel.2009.01.013

URL : https://doi.org/10.1016/j.devcel.2009.01.013

A. Zovein, A. Luque, and K. Turlo, ??1 Integrin Establishes Endothelial Cell Polarity and Arteriolar Lumen Formation via a Par3-Dependent Mechanism, Developmental Cell, vol.18, issue.1, pp.39-51, 2010.
DOI : 10.1016/j.devcel.2009.12.006

URL : https://doi.org/10.1016/j.devcel.2009.12.006

J. Gavard, V. Patel, and J. Gutkind, Angiopoietin-1 Prevents VEGF-Induced Endothelial Permeability by Sequestering Src through mDia, Developmental Cell, vol.14, issue.1, pp.25-36, 2008.
DOI : 10.1016/j.devcel.2007.10.019

URL : https://doi.org/10.1016/j.devcel.2007.10.019

S. Fukuhara, K. Sako, and T. Minami, Differential function of Tie2 at cell???cell contacts and cell???substratum contacts regulated by angiopoietin-1, Nature Cell Biology, vol.9, issue.5, pp.513-539, 2008.
DOI : 10.1091/mbc.E05-07-0647

N. Ricard and M. Simons, When It Is Better to Regress: Dynamics of Vascular Pruning, PLOS Biology, vol.25, issue.5, p.1002148, 2015.
DOI : 10.1371/journal.pbio.1002148.g001

URL : https://doi.org/10.1371/journal.pbio.1002148

J. Folkman and . Angiogenesis, Angiogenesis, Annual Review of Medicine, vol.57, issue.1, pp.1-18, 2006.
DOI : 10.1146/annurev.med.57.121304.131306

D. Hanahan and R. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-74, 2011.
DOI : 10.1016/j.cell.2011.02.013

P. Carmeliet and R. Jain, Molecular mechanisms and clinical applications of angiogenesis, Nature, vol.464, issue.7347, pp.298-307, 2011.
DOI : 10.1038/nature08889

URL : http://europepmc.org/articles/pmc4049445?pdf=render

S. Azzi, J. Hebda, and J. Gavard, Vascular Permeability and Drug Delivery in Cancers, Frontiers in Oncology, vol.3, p.211, 2013.
DOI : 10.3389/fonc.2013.00211

URL : https://www.frontiersin.org/articles/10.3389/fonc.2013.00211/pdf

T. , P. J. Gavard, and . Inscrivez,

F. Structure-fédérative-de-recherche and . Bonamy,

, cellulaire, à un enseignement pratique, grâce à des vidéos tournées en conditions réelles au laboratoire et détaillant les principales étapes de culture et de reprogrammation de cellules souches. Grâce à ce cours, vous allez pouvoir partir à la découverte d'une plate-forme de production de cellules souches et du laboratoire de recherche de l'institut du thorax Les inscriptions, gratuites, sont ouvertes sur le site de la plate-forme ministérielle FUN : https://www.france-universite-numerique-mooc