, vivo inhibitor of bacterial secretin PulD, Proc Natl Acad Sci, vol.104, pp.17983-17988

L. Mullen, S. Nair, J. Ward, A. Rycroft, and N. Henderson, Phage display in the study of infectious diseases, Trends in Microbiology, vol.14, issue.3, pp.141-147, 2006.
DOI : 10.1016/j.tim.2006.01.006

G. Oliveira, M. Silva, W. Lucena, E. Nakasu, A. Firmino et al., Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis), BMC Biotechnology, vol.11, issue.1, pp.11-85, 2011.
DOI : 10.1016/S0014-5793(00)01505-2

URL : https://bmcbiotechnol.biomedcentral.com/track/pdf/10.1186/1472-6750-11-85

E. Osada, Y. Shimizu, B. Akbar, T. Kanamori, and T. Ueda, Epitope Mapping Using Ribosome Display in a Reconstituted Cell-Free Protein Synthesis System, The Journal of Biochemistry, vol.16, issue.5, pp.693-700, 2009.
DOI : 10.1016/j.str.2007.12.021

S. Pacheco, I. Gómez, R. Sato, A. Bravo, and M. Soberón, Functional display of Bacillus thuringiensis Cry1Ac toxin on T7 phage, Journal of Invertebrate Pathology, vol.92, issue.1, pp.45-49, 2006.
DOI : 10.1016/j.jip.2006.02.007

S. Pacheco, I. Gómez, S. Gill, A. Bravo, and M. Soberón, Enhancement of insecticidal activity of Bacillus thuringiensis Cry1A toxins by fragments of a toxin-binding cadherin correlates with oligomer formation, Peptides, vol.30, issue.3, pp.583-588, 2009.
DOI : 10.1016/j.peptides.2008.08.006

L. Pardo?lópez, M. Soberón, and A. Bravo, insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection, FEMS Microbiology Reviews, vol.37, issue.1, pp.3-22, 2013.
DOI : 10.1074/jbc.M110057200

C. Pérez, L. Fernandez, J. Sun, J. Folch, S. Gill et al., Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor, Proceedings of the National Academy of Sciences, vol.99, issue.9, pp.18303-18308, 2005.
DOI : 10.1073/pnas.092615399

M. Soberón, J. López?díaz, and A. Bravo, Cyt toxins produced by Bacillus thuringiensis: A protein fold conserved in several pathogenic microorganisms, Peptides, vol.41, pp.87-93, 2013.
DOI : 10.1016/j.peptides.2012.05.023

G. Soltes, H. Barker, K. Marmai, E. Pun, A. Yuen et al., A new helper phage and phagemid vector system improves viral display of antibody Fab fragments and avoids propagation of insert-less virions, Journal of Immunological Methods, vol.274, issue.1-2, pp.233-244, 2003.
DOI : 10.1016/S0022-1759(02)00294-6

D. Steiner, P. Forrer, M. Stumpp, and A. Plückthun, Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display, Nature Biotechnology, vol.222, issue.7, pp.823-831, 2006.
DOI : 10.1111/j.1432-1033.1994.tb18941.x

S. Vílchez, J. Jacoby, and D. Ellar, Display of Biologically Functional Insecticidal Toxin on the Surface of ?? Phage, Applied and Environmental Microbiology, vol.70, issue.11, pp.6587-6594, 2004.
DOI : 10.1128/AEM.70.11.6587-6594.2004

A. Wörn and A. Plückthun, Stability engineering of antibody single-chain Fv fragments, Journal of Molecular Biology, vol.305, issue.5, pp.989-1010, 2001.
DOI : 10.1006/jmbi.2000.4265

D. Wu and B. Federici, A 20-kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis., Journal of Bacteriology, vol.175, issue.16, pp.5276-5280, 1993.
DOI : 10.1128/jb.175.16.5276-5280.1993

URL : http://jb.asm.org/content/175/16/5276.full.pdf