P. Kleihues, The New WHO Classification of Brain Tumours, Brain Pathology, vol.8, issue.3, pp.255-268, 1993.
DOI : 10.1007/978-94-009-3347-7_12

R. Stupp, Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.987-996, 2005.
DOI : 10.1056/NEJMoa043330

Z. Somosy, Radiation response of cell organelles, Micron, vol.31, issue.2, pp.165-181, 2000.
DOI : 10.1016/S0968-4328(99)00083-9

L. Caër and S. , Water radiolysis: influence of oxide surfaces on H 2 production under ionizing radiation, pp.235-253, 2011.

D. T. Goodhead, Initial Events in the Cellular Effects of Ionizing Radiations: Clustered Damage in DNA, International Journal of Radiation Biology, vol.115, issue.1, pp.7-17, 1994.
DOI : 10.2307/3577289

Y. C. Lim, A Role for Homologous Recombination and Abnormal Cell-Cycle Progression in Radioresistance of Glioma-Initiating Cells, Molecular Cancer Therapeutics, vol.11, issue.9, pp.1863-1872, 2012.
DOI : 10.1158/1535-7163.MCT-11-1044

S. D. Bao, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, vol.8, issue.7120, pp.756-760, 2006.
DOI : 10.1038/nn1473

S. Bao, Targeting Cancer Stem Cells through L1CAM Suppresses Glioma Growth, Cancer Research, vol.68, issue.15, pp.6043-6048, 2008.
DOI : 10.1158/0008-5472.CAN-08-1079

D. W. Andrews, A review of 3 current radiosurgery systems, Surgical Neurology, vol.66, issue.6, pp.559-564, 2006.
DOI : 10.1016/j.surneu.2006.08.002

B. A. Jereczek-fossa, Particle beam radiotherapy for head and neck tumors: Radiobiological basis and clinical experience, Head & Neck, vol.30, issue.8, pp.750-760, 2006.
DOI : 10.1016/0360-3016(94)90744-7

C. Vanpouille-box, Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with 188, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00638699

, Re-lipid nanocapsules, Biomaterials, vol.32, pp.6781-6790

S. B. Schwarz, Iodine-125 brachytherapy for brain tumours - a review, Radiation Oncology, vol.7, issue.1, p.30, 2012.
DOI : 10.1186/1748-717X-7-30

A. Etcheverry, DGKI methylation status modulates the prognostic value of MGMT in glioblastoma patients treated with combined radio-chemotherapy with temozolomide Predictive value of MGMT in glioblastoma: a multicenter study, PLoS ONE J. Clin. Oncol, vol.9, pp.26-22065, 2008.

M. Eoli, Methylation of O-6-methylguanine DNA methyltransferase and loss of heterozygosity on 19q and/or 17p are Feature Review Trends in Pharmacological Sciences, 2007.

, overlapping features of secondary glioblastomas with prolonged survival, Clin. Cancer Res, vol.13, pp.2606-2613

M. E. Hegi, Gene Silencing and Benefit from Temozolomide in Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.997-1003, 2005.
DOI : 10.1056/NEJMoa043331

M. Weller, MGMT promoter methylation in malignant gliomas: ready for personalized medicine?, Nature Reviews Neurology, vol.113, issue.1, pp.39-51, 2010.
DOI : 10.1093/jnen/60.8.808

A. L. Rivera, MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma, Neuro-Oncology, vol.83, issue.2, pp.116-121, 2010.
DOI : 10.1007/s11060-006-9320-0

J. Chang, Transferrin Adsorption onto PLGA Nanoparticles Governs Their Interaction with Biological Systems from Blood Circulation to Brain Cancer Cells, Pharmaceutical Research, vol.63, issue.3, pp.1495-1505, 2011.
DOI : 10.1016/j.addr.2010.10.008

S. K. Singh, Identification of a cancer stem cell in human brain tumors, Cancer Res, vol.63, pp.5821-5828, 2003.

S. K. Singh, Identification of human brain tumour initiating cells, Nature, vol.64, issue.suppl. 1, pp.396-401, 2004.
DOI : 10.1158/0008-5472.CAN-04-1364

L. Cheng, Potential therapeutic implications of cancer stem cells in glioblastoma, Biochemical Pharmacology, vol.80, issue.5, pp.654-665, 2010.
DOI : 10.1016/j.bcp.2010.04.035

J. Lee, Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines, Cancer Cell, vol.9, issue.5, pp.391-403, 2006.
DOI : 10.1016/j.ccr.2006.03.030

J. M. Adams and A. Strasser, Is tumor growth sustained by rare cancer stem cells or dominant clones? Cancer Res, pp.4018-4021, 2008.

J. Wang, Notch Promotes Radioresistance of Glioma Stem Cells, Stem Cells, vol.28, pp.17-28, 2009.
DOI : 10.1002/stem.261

URL : http://europepmc.org/articles/pmc2825687?pdf=render

M. J. Walters, Inhibition of CXCR7 extends survival following irradiation of brain tumours in mice and rats, British Journal of Cancer, vol.110, issue.5, pp.1179-1188, 2014.
DOI : 10.1152/physiolgenomics.00147.2007

Y. Wei, Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells, Proceedings of the National Academy of Sciences, vol.29, issue.8, pp.6829-6834, 2013.
DOI : 10.1128/MCB.01472-08

URL : http://www.pnas.org/content/110/17/6829.full.pdf

E. Bourseau-guilmain, The importance of the stem cell marker prominin-1/CD133 in the uptake of transferrin and in iron metabolism in human colon cancer Caco-2 cells Integrin alpha 6 regulates glioblastoma stem cells, PLoS ONE Cell Stem Cell, vol.6, issue.6, pp.421-432, 2010.

J. D. Lathia, High-Throughput Flow Cytometry Screening Reveals a Role for Junctional Adhesion Molecule A as a Cancer Stem Cell Maintenance Factor, Cell Reports, vol.6, issue.1, pp.117-129, 2014.
DOI : 10.1016/j.celrep.2013.11.043

URL : https://doi.org/10.1016/j.celrep.2013.11.043

A. Schulte, A distinct subset of glioma cell lines with stem cell-like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target, Glia, vol.86, issue.4, pp.590-602, 2011.
DOI : 10.1038/labinvest.3700482

A. T. Ogden, IDENTIFICATION OF A2B5+CD133??? TUMOR-INITIATING CELLS IN ADULT HUMAN GLIOMAS, Neurosurgery, vol.94, issue.2, pp.505-514, 2008.
DOI : 10.1073/pnas.94.23.12425

A. Tchoghandjian, A2B5 Cells from Human Glioblastoma have Cancer Stem Cell Properties, Brain Pathology, vol.4, issue.1, pp.211-221, 2010.
DOI : 10.1111/j.1750-3639.2009.00269.x

URL : https://hal.archives-ouvertes.fr/hal-00507521

R. G. Verhaak, Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer Cell, vol.17, issue.1, pp.98-110, 2010.
DOI : 10.1016/j.ccr.2009.12.020

R. Morrison, Targeting the Mechanisms of Resistance to Chemotherapy and Radiotherapy with the Cancer Stem Cell Hypothesis, Journal of Oncology, vol.8, issue.6, 2011.
DOI : 10.1038/nature03128

, J. Oncol, p.941876, 2011.

K. Yan, The evolving landscape of glioblastoma stem cells, Current Opinion in Neurology, vol.26, issue.6, pp.701-707, 2013.
DOI : 10.1097/WCO.0000000000000032

M. Santoni, Essential Role of Gli Proteins in Glioblastoma Multiforme, Current Protein & Peptide Science, vol.14, issue.2, pp.133-140, 2013.
DOI : 10.2174/1389203711314020005

D. G. Duda, CXCL12 (SDF1 alpha)?CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin, Cancer Res, vol.17, pp.2074-2080, 2011.

D. A. Reardon, Randomized Phase II Study of Cilengitide, an Integrin-Targeting Arginine-Glycine-Aspartic Acid Peptide, in Recurrent Glioblastoma Multiforme, Journal of Clinical Oncology, vol.26, issue.34, pp.5610-5617, 2008.
DOI : 10.1200/JCO.2008.16.7510

P. H. Gutin, Safety and Efficacy of Bevacizumab With Hypofractionated Stereotactic Irradiation for Recurrent Malignant Gliomas, International Journal of Radiation Oncology*Biology*Physics, vol.75, issue.1, pp.156-163, 2009.
DOI : 10.1016/j.ijrobp.2008.10.043

R. H. Bobo, Convection-enhanced delivery of macromolecules in the brain., Proceedings of the National Academy of Sciences, vol.91, issue.6, pp.2076-2080, 1994.
DOI : 10.1073/pnas.91.6.2076

S. Petit, Chimioth??rapie locale dans les gliomes malins??: de l???injection ?? la seringue aux nanotechnologies, Revue Neurologique, vol.164, issue.6-7, pp.547-553, 2008.
DOI : 10.1016/j.neurol.2008.03.015

A. Jain, Guiding intracortical brain tumour cells to an extracortical cytotoxic hydrogel using aligned polymeric nanofibres, Nature Materials, vol.33, issue.3, pp.309-316, 2014.
DOI : 10.1016/j.biomaterials.2012.05.021

M. R. Zalutsky, Clinical experience with alpha-particleemitting At-211: Treatment of recurrent brain tumor patients with At-211-labeled chimeric antitenascin monoclonal antibody 81C6, 2008.

, J. Nucl. Med, vol.49, pp.30-38

A. E. Nel, Understanding biophysicochemical interactions at the nano???bio interface, Nature Materials, vol.20, issue.7, pp.543-557, 2009.
DOI : 10.1289/ehp.6000

D. Peer, Nanocarriers as an emerging platform for cancer therapy, Nature Nanotechnology, vol.8, issue.12, pp.751-760, 2007.
DOI : 10.1038/bjc.1996.587

M. C. Thompson, Genomics Identifies Medulloblastoma Subgroups That Are Enriched for Specific Genetic Alterations, Journal of Clinical Oncology, vol.24, issue.12, pp.1924-1931, 2006.
DOI : 10.1200/JCO.2005.04.4974

T. Chiba, Enhanced Self-Renewal Capability in Hepatic Stem/Progenitor Cells Drives Cancer Initiation, Gastroenterology, vol.133, issue.3, pp.937-950, 2007.
DOI : 10.1053/j.gastro.2007.06.016

Y. Kim, Wnt activation is implicated in glioblastoma radioresistance, Laboratory Investigation, vol.61, issue.3, pp.466-473, 2012.
DOI : 10.1016/j.radonc.2011.05.044

URL : https://www.nature.com/articles/labinvest2011161.pdf

T. Ashizawa, Effect of the STAT3 inhibitor STX-0119 on the proliferation of cancer stem-like cells derived from recurrent glioblastoma, International Journal of Oncology, vol.43, issue.1, pp.219-227, 2013.
DOI : 10.3892/ijo.2013.1916

T. M. Thornton, Phosphorylation by p38 MAPK as an Alternative Pathway for GSK3?? Inactivation, Science, vol.24, issue.8, pp.667-670, 2008.
DOI : 10.1038/sj.emboj.7600633

URL : http://europepmc.org/articles/pmc2597039?pdf=render

E. T. Strovel, Protein phosphatase 2C alpha dephosphorylates axin and activates LEF-1-dependent transcription, 2000.
DOI : 10.1074/jbc.275.4.2399

URL : http://www.jbc.org/content/275/4/2399.full.pdf

, J. Biol. Chem, vol.275, pp.2399-2403

W. Luo, Protein phosphatase 1 regulates assembly and function of the ??-catenin degradation complex, The EMBO Journal, vol.438, issue.6, p.1511, 2007.
DOI : 10.1038/sj.emboj.7601607

S. Smith, Tankyrase, a Poly(ADP-Ribose) Polymerase at Human Telomeres, Science, vol.282, issue.5393, pp.1484-1487, 1998.
DOI : 10.1126/science.282.5393.1484

S. J. Hsiao and S. Smith, Tankyrase function at telomeres, spindle poles, and beyond, Biochimie, vol.90, issue.1, pp.83-92, 2008.
DOI : 10.1016/j.biochi.2007.07.012

B. Z. Chen, Small molecule???mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer, Nature Chemical Biology, vol.222, issue.2, pp.100-107, 2009.
DOI : 10.1038/nchembio.137

J. Waaler, Novel Synthetic Antagonists of Canonical Wnt Signaling Inhibit Colorectal Cancer Cell Growth, Cancer Research, vol.71, issue.1, p.197, 2011.
DOI : 10.1158/0008-5472.CAN-10-1282

J. Waaler, A Novel Tankyrase Inhibitor Decreases Canonical Wnt Signaling in Colon Carcinoma Cells and Reduces Tumor Growth in Conditional APC Mutant Mice, Cancer Research, vol.72, issue.11, pp.2822-2832, 2012.
DOI : 10.1158/0008-5472.CAN-11-3336

URL : http://cancerres.aacrjournals.org/content/72/11/2822.full.pdf

S. M. Huang, Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling, Nature, vol.7, issue.7264, pp.614-620, 2009.
DOI : 10.1074/mcp.M800029-MCP200

T. Karlberg, Structural Basis for the Interaction between Tankyrase-2 and a Potent Wnt-Signaling Inhibitor, Journal of Medicinal Chemistry, vol.53, issue.14, pp.5352-5355, 2010.
DOI : 10.1021/jm100249w

E. Wahlberg, Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors, Nature Biotechnology, vol.185, issue.3, pp.283-288, 2012.
DOI : 10.1038/nbt0308-303

M. Y. Chen, The Anti-Helminthic Niclosamide Inhibits Wnt/Frizzled1 Signaling, Biochemistry, vol.48, issue.43, pp.10267-10274, 2009.
DOI : 10.1021/bi9009677

URL : http://europepmc.org/articles/pmc2801776?pdf=render

W. Y. Lu, Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/ beta-catenin pathway Niclosamide, an old antihelminthic agent, demonstrates antitumor activity by blocking multiple signaling pathways of cancer stem cells, PLoS ONE Chin. J. Cancer, vol.6, issue.31, pp.178-184, 2011.

T. Osada, Antihelminth Compound Niclosamide Downregulates Wnt Signaling and Elicits Antitumor Responses in Tumors with Activating APC Mutations, Cancer Research, vol.71, issue.12, pp.4172-4182, 2011.
DOI : 10.1158/0008-5472.CAN-10-3978

Y. H. Li, Dkk1 stabilizes Wnt co-receptor LRP6: implication for Wnt ligand-induced LRP6 down-regulation Tyrosine kinase inhibitor STI-571/Gleevec downregulates the beta-catenin signaling activity, PLoS ONE Cancer Lett, vol.5, issue.193, p.161, 2003.

A. B. Heimberger, Mechanisms of action of rapamycin in gliomas, Neuro-Oncology, vol.7, issue.1, pp.1-11, 2005.
DOI : 10.1038/sj.onc.1206197

R. C. Castellino and D. L. Durden, Mechanisms of Disease: the PI3K???Akt???PTEN signaling node???an intercept point for the control of angiogenesis in brain tumors, Nature Clinical Practice Neurology, vol.401, issue.12, pp.682-693, 2007.
DOI : 10.1038/ncpneuro0661

, Feature Review Trends in Pharmacological Sciences, vol.36, issue.4, 2015.

B. H. Jiang, L. Z. Liu, G. F. Woude, and G. Klein, PI3K/PTEN signaling in angiogenesis and tumorigenesis Genetic alteration and expression of the phosphoinositol-3-kinase/Akt pathway genes PIK3CA and PIKE in human glioblastomas, Advances in Cancer Research, pp.19-65, 2005.

Y. Sonoda, Akt pathway activation converts anaplastic astrocytoma to glioblastoma multiforme in a human astrocyte model of glioma, Cancer Res, vol.61, pp.6674-6678, 2001.

E. Chautard, Role of Akt in human malignant glioma: from oncogenesis to tumor aggressiveness, Journal of Neuro-Oncology, vol.8, issue.2, p.205, 2014.
DOI : 10.1016/j.ccr.2005.11.006

A. Anandharaj, Rapamycin-mediated mTOR inhibition attenuates survivin and sensitizes glioblastoma cells to radiation therapy, Acta Biochimica et Biophysica Sinica, vol.67, issue.2, pp.292-300, 2011.
DOI : 10.1158/0008-5472.CAN-06-3497

E. T. Shinohara, Enhanced radiation damage of tumor vasculature by mTOR inhibitors, Oncogene, vol.24, issue.35, pp.5414-5422, 2005.
DOI : 10.1002/(SICI)1097-4652(199902)178:2<235::AID-JCP13>3.0.CO;2-S

J. S. Eshleman, Inhibition of the mammalian target of rapamycin sensitizes U87 Xenografts to fractionated radiation therapy, Cancer Res, vol.62, pp.7291-7297, 2002.

J. S. Hardwick, Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins, Proceedings of the National Academy of Sciences, vol.4, issue.11, p.14866, 1999.
DOI : 10.1038/3282

M. Guba, Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor, Nature Medicine, vol.11, issue.2, pp.128-135, 2002.
DOI : 10.1006/cyto.1998.0426

O. L. Chinot, Bevacizumab plus Radiotherapy???Temozolomide for Newly Diagnosed Glioblastoma, New England Journal of Medicine, vol.370, issue.8, pp.709-722, 2014.
DOI : 10.1056/NEJMoa1308345

D. Hambardzumyan, PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo, Genes & Development, vol.22, issue.4, pp.436-448, 2008.
DOI : 10.1101/gad.1627008

K. E. Reilly, mTOR Inhibition Induces Upstream Receptor Tyrosine Kinase Signaling and Activates Akt, Cancer Research, vol.66, issue.3, pp.1500-1508, 2006.
DOI : 10.1158/0008-5472.CAN-05-2925

D. D. Sarbassov, Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex, Science, vol.307, issue.5712, pp.1098-1101, 2005.
DOI : 10.1126/science.1106148

F. Tremblay, Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance, Proceedings of the National Academy of Sciences, vol.408, issue.6815, pp.14056-14061, 2007.
DOI : 10.1038/35050135

S. Osuka, IGF1 Receptor Signaling Regulates Adaptive Radioprotection in Glioma Stem Cells, STEM CELLS, vol.17, issue.4, pp.627-640, 2013.
DOI : 10.1158/1078-0432.CCR-10-2621

P. D. Brown, Phase I/II Trial of Erlotinib and Temozolomide With Radiation Therapy in the Treatment of Newly Diagnosed Glioblastoma Multiforme: North Central Cancer Treatment Group Study N0177, Journal of Clinical Oncology, vol.26, issue.34, pp.5603-5609, 2008.
DOI : 10.1200/JCO.2008.18.0612

M. D. Prados, Phase II Study of Erlotinib Plus Temozolomide During and After Radiation Therapy in Patients With Newly Diagnosed Glioblastoma Multiforme or Gliosarcoma, Journal of Clinical Oncology, vol.27, issue.4, pp.579-584, 2009.
DOI : 10.1200/JCO.2008.18.9639

D. M. Peereboom, Phase II trial of erlotinib with temozolomide and radiation in patients with newly diagnosed glioblastoma multiforme, Journal of Neuro-Oncology, vol.26, issue.9, pp.93-99, 2010.
DOI : 10.1016/j.ijrobp.2006.01.018

S. E. Combs, Influence of EGFR-amplification, EGFR-, EGFRvIII-and PTEN-expression as well as MGMT-promotor methylation status on outcome in patients with primary glioblastoma treated with radiation, temozolomide and EGFRinhibition with Cetuximab: interim analysis from the GERTprotocol, Strahlenther. Und Onkol, vol.185, p.16, 2009.

J. 89-hainsworth, Phase II study of concurrent radiation therapy, temozolomide, and bevacizumab followed by bevacizumab/ everolimus as first-line treatment for patients with glioblastoma, Clin. Adv. Hematol. Oncol, vol.10, pp.240-246, 2012.

D. A. Reardon, Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma, Journal of Neuro-Oncology, vol.65, issue.2, pp.219-230, 2010.
DOI : 10.1016/j.ijrobp.2006.01.018

T. N. Kreisl, A pilot study of everolimus and gefitinib in the treatment of recurrent glioblastoma (GBM), Journal of Neuro-Oncology, vol.66, issue.1, pp.99-105, 2009.
DOI : 10.1007/s11060-008-9741-z

M. Hayakawa, Synthesis and biological evaluation of pyrido[3???,2???:4,5]furo[3,2-d]pyrimidine derivatives as novel PI3 kinase p110?? inhibitors, Bioorganic & Medicinal Chemistry Letters, vol.17, issue.9, pp.2438-2442, 2007.
DOI : 10.1016/j.bmcl.2007.02.032

S. Maira, Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity, Molecular Cancer Therapeutics, vol.7, issue.7, pp.1851-1863, 2008.
DOI : 10.1158/1535-7163.MCT-08-0017

Q. W. Fan, Akt and autophagy cooperate to promote survival of drug-resistant glioma The dual PI3K/mTOR inhibitor NVP- BEZ235 is a potent inhibitor of ATM-and DNA-PKCs-mediated DNA damage responses, Sci. Signal. Neoplasia, vol.3, issue.14, pp.34-43, 2010.

G. J. Cerniglia, Inhibition of Autophagy as a Strategy to Augment Radiosensitization by the Dual Phosphatidylinositol 3-Kinase/Mammalian Target of Rapamycin Inhibitor NVP-BEZ235, Molecular Pharmacology, vol.82, issue.6, 2012.
DOI : 10.1124/mol.112.080408

, Mol. Pharmacol, vol.82, pp.1230-1240

O. J. Becher, Preclinical Evaluation of Radiation and Perifosine in a Genetically and Histologically Accurate Model of Brainstem Glioma, Cancer Research, vol.70, issue.6, pp.2548-2557, 2010.
DOI : 10.1158/0008-5472.CAN-09-2503

E. Chautard, Akt signaling pathway: a target for radiosensitizing human malignant glioma, Neuro Oncol, vol.12, pp.434-443, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01636179

B. W. Purow, Expression of Notch-1 and Its Ligands, Delta-Like-1 and Jagged-1, Is Critical for Glioma Cell Survival and Proliferation, Cancer Research, vol.65, issue.6, pp.2353-2363, 2005.
DOI : 10.1158/0008-5472.CAN-04-1890

X. Fan, Notch Pathway Inhibition Depletes Stem-like Cells and Blocks Engraftment in Embryonal Brain Tumors, Cancer Research, vol.66, issue.15, pp.7445-7452, 2006.
DOI : 10.1158/0008-5472.CAN-06-0858

J. L. Wang, Notch Promotes Radioresistance of Glioma Stem Cells, Stem Cells, vol.28, pp.17-28, 2010.
DOI : 10.1002/stem.261

J. Lin, ??-Secretase Inhibitor-I Enhances Radiosensitivity of Glioblastoma Cell Lines by Depleting CD133+ Tumor Cells, Archives of Medical Research, vol.41, issue.7, pp.519-529, 2010.
DOI : 10.1016/j.arcmed.2010.10.006

L. R. Perumalsamy, A hierarchical cascade activated by non-canonical Notch signaling and the mTOR???Rictor complex regulates neglect-induced death in mammalian cells, Cell Death & Differentiation, vol.91, issue.6, pp.879-889, 2009.
DOI : 10.4049/jimmunol.177.8.5041

J. Wu, Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway, Toxicology Letters, vol.220, issue.1, pp.61-69, 2013.
DOI : 10.1016/j.toxlet.2013.03.019

V. Clement, HEDGEHOG-GLI1 Signaling Regulates Human Glioma Growth, Cancer Stem Cell Self-Renewal, and Tumorigenicity, Current Biology, vol.17, issue.2, pp.165-172, 2007.
DOI : 10.1016/j.cub.2006.11.033

T. Takezaki, Essential role of the Hedgehog signaling pathway in human glioma-initiating cells, Cancer Science, vol.8, issue.7, p.1306, 2011.
DOI : 10.1186/1471-2407-8-29

E. E. Bar, Cyclopamine-Mediated Hedgehog Pathway Inhibition Depletes Stem-Like Cancer Cells in Glioblastoma, Stem Cells, vol.66, issue.10, pp.2524-2533, 2007.
DOI : 10.1016/j.urolonc.2005.11.038

P. Hau, TGF-&#946;2 Signaling in High-Grade Gliomas, Current Pharmaceutical Biotechnology, vol.12, issue.12, pp.2150-2157, 2011.
DOI : 10.2174/138920111798808347

E. Satoh, Effect of irradiation on transforming growth factor-beta secretion by malignant glioma cells, Journal of Neuro-Oncology, vol.33, issue.3, pp.195-200, 1997.
DOI : 10.1023/A:1005791621265

J. R. Wang, Cellular Sources of Transforming Growth Factor-?? Isoforms in Early and Chronic Radiation Enteropathy, The American Journal of Pathology, vol.153, issue.5, pp.1531-1540, 1998.
DOI : 10.1016/S0002-9440(10)65741-0

M. H. Barcellos-hoff, Therapeutic Targets in Malignant Glioblastoma Microenvironment, Seminars in Radiation Oncology, vol.19, issue.3, pp.163-170, 2009.
DOI : 10.1016/j.semradonc.2009.02.004

M. E. Jobling, Isoform-Specific Activation of Latent Transforming Growth Factor ?? (LTGF-??) by Reactive Oxygen Species, Radiation Research, vol.166, issue.6, pp.839-848, 2006.
DOI : 10.1667/RR0695.1

C. Shao, Role of TGF-??1 and nitric oxide in the bystander response of irradiated glioma cells, Oncogene, vol.59, issue.4, pp.434-440, 2008.
DOI : 10.1073/pnas.030420797

M. Zhang, Blockade of TGF-?? Signaling by the TGF??R-I Kinase Inhibitor LY2109761 Enhances Radiation Response and Prolongs Survival in Glioblastoma, Cancer Research, vol.71, issue.23, pp.7155-7167, 2011.
DOI : 10.1158/0008-5472.CAN-11-1212

M. X. Zhang, Trimodal Glioblastoma Treatment Consisting of Concurrent Radiotherapy, Temozolomide, and the Novel TGF-?? Receptor I Kinase Inhibitor LY2109761, Neoplasia, vol.13, issue.6, pp.537-549, 2011.
DOI : 10.1593/neo.11258

M. E. Hardee, Resistance of Glioblastoma-Initiating Cells to Radiation Mediated by the Tumor Microenvironment Can Be Abolished by Inhibiting Transforming Growth Factor-??, Cancer Research, vol.72, issue.16, pp.4119-4129, 2012.
DOI : 10.1158/0008-5472.CAN-12-0546

P. Hau, 2 with AP 12009 in Recurrent Malignant Gliomas: From Preclinical to Phase I/II Studies, Oligonucleotides, vol.17, issue.2, pp.201-212, 2007.
DOI : 10.1089/oli.2006.0053

, Feature Review Trends in Pharmacological Sciences, vol.36, issue.4, 2015.

U. Bogdahn, Targeted therapy for high-grade glioma with the TGF-??2 inhibitor trabedersen: results of a randomized and controlled phase IIb study, Neuro-Oncology, vol.26, issue.13, pp.132-142, 2011.
DOI : 10.1200/JCO.2007.14.8163

N. De-la-iglesia, STAT3 Regulation of Glioblastoma Pathogenesis, Current Molecular Medicine, vol.9, issue.5, pp.580-590, 2009.
DOI : 10.2174/156652409788488739

C. J. Chang, Inhibition of phosphorylated STAT3 by cucurbitacin I enhances chemoradiosensitivity in medulloblastoma-derived cancer stem cells, Child's Nervous System, vol.7, issue.3, pp.363-373, 2012.
DOI : 10.1186/1471-2407-7-149

Y. P. Yang, Resveratrol suppresses tumorigenicity and enhances radiosensitivity in primary glioblastoma tumor initiating cells by inhibiting the STAT3 axis, Journal of Cellular Physiology, vol.217, issue.3, pp.976-993, 2012.
DOI : 10.1002/jcp.21541

C. Moyal and E. , 142: From Bench to bedside: experience of the glioblastoma model for optimization of radiosensitization, Radiotherapy and Oncology, vol.110, pp.25-28, 2012.
DOI : 10.1016/S0167-8140(15)34163-3

E. Cohen-jonathan, Radioresistance induced by the high molecular forms of the basic fibroblast growth factor is associated with an increased G2 delay and a hyperphosphorylation of p34CDC2 in HeLa cells, Cancer Res, vol.57, pp.1364-1370, 1997.

I. Ader, The radioprotective effect of the 24???kDa FGF-2 isoform in HeLa cells is related to an increased expression and activity of the DNA dependent protein kinase (DNA-PK) catalytic subunit, Oncogene, vol.21, issue.42, pp.6471-6479, 2002.
DOI : 10.1016/S0092-8674(00)80111-7

I. Ader, RhoB controls the 24???kDa FGF-2-induced radioresistance in HeLa cells by preventing post-mitotic cell death, Oncogene, vol.21, issue.39, pp.5998-6006, 2002.
DOI : 10.1038/nbt1094-1003

URL : http://www.nature.com/onc/journal/v21/n39/pdf/1205746a.pdf

K. Dittmann, Radiation-induced Epidermal Growth Factor Receptor Nuclear Import Is Linked to Activation of DNA-dependent Protein Kinase, Journal of Biological Chemistry, vol.6, issue.35, pp.31182-31189, 2005.
DOI : 10.1093/emboj/18.5.1397

URL : http://www.jbc.org/content/280/35/31182.full.pdf

N. Skuli, Activation of RhoB by Hypoxia Controls Hypoxia-Inducible Factor-1?? Stabilization through Glycogen Synthase Kinase-3 in U87 Glioblastoma Cells, Cancer Research, vol.66, issue.1, pp.482-489, 2006.
DOI : 10.1158/0008-5472.CAN-05-2299

URL : http://cancerres.aacrjournals.org/content/canres/66/1/482.full.pdf

J. Milia, Farnesylated RhoB inhibits radiation-induced mitotic cell death and controls radiation-induced centrosome overduplication, Cell Death and Differentiation, vol.4, issue.5, pp.492-501, 2005.
DOI : 10.4161/cc.1.6.272

URL : http://www.nature.com/cdd/journal/v12/n5/pdf/4401586a.pdf

C. Delmas, Farnesyltransferase inhibitor, R115777, reverses the resistance of human glioma cell lines to ionizing radiation, International Journal of Cancer, vol.19, issue.1, pp.43-48, 2002.
DOI : 10.1007/BF01053280

URL : http://onlinelibrary.wiley.com/doi/10.1002/ijc.10439/pdf

C. Delmas, The farnesyltransferase inhibitor R115777 reduces hypoxia and matrix metalloproteinase 2 expression in human glioma xenograft, Clin. Cancer Res, vol.9, pp.6062-6068, 2003.

I. Ader, Inhibition of Rho pathways induces radiosensitization and oxygenation in human glioblastoma xenografts, Oncogene, vol.22, issue.55, pp.8861-8869, 2003.
DOI : 10.1074/jbc.M010190200

URL : http://www.nature.com/onc/journal/v22/n55/pdf/1207095a.pdf

A. Haimovitzfriedman, Protein-kinase-C mediates basic fibroblast growth-factor protection of endothelial-cells against radiation-induced apoptosis, Cancer Res, vol.54, pp.2591-2597, 1994.

C. Wild-bode, Sublethal irradiation promotes migration and invasiveness of glioma cells: Implications for radiotherapy of human glioblastoma, Cancer Res, vol.61, pp.2744-2750, 2001.

S. Monferran, ??v??3 and ??v??5 integrins control glioma cell response to ionising radiation through ILK and RhoB, International Journal of Cancer, vol.12, issue.150, pp.357-364, 2008.
DOI : 10.1038/sj.cdd.4401586

URL : http://onlinelibrary.wiley.com/doi/10.1002/ijc.23498/pdf

E. C. Moyal, Phase I Trial of Tipifarnib (R115777) Concurrent With Radiotherapy in Patients with Glioblastoma Multiforme, International Journal of Radiation Oncology*Biology*Physics, vol.68, issue.5, pp.1396-1401, 2007.
DOI : 10.1016/j.ijrobp.2007.02.043

A. Ducassou, ??v??3 Integrin and Fibroblast growth factor receptor 1 (FGFR1): Prognostic factors in a phase I???II clinical trial associating continuous administration of Tipifarnib with radiotherapy for patients with newly diagnosed glioblastoma, European Journal of Cancer, vol.49, issue.9, pp.2161-2169, 2013.
DOI : 10.1016/j.ejca.2013.02.033

R. Stupp, Phase I/IIa Study of Cilengitide and Temozolomide With Concomitant Radiotherapy Followed by Cilengitide and Temozolomide Maintenance Therapy in Patients With Newly Diagnosed Glioblastoma, Journal of Clinical Oncology, vol.28, issue.16, pp.2712-2718, 2010.
DOI : 10.1200/JCO.2009.26.6650

I. Ader, Preclinical evidence that SSR128129E ??? A novel small-molecule multi-fibroblast growth factor receptor blocker ??? Radiosensitises human glioblastoma, European Journal of Cancer, vol.50, issue.13, pp.2351-2359, 2014.
DOI : 10.1016/j.ejca.2014.05.012

A. L. Harris, Hypoxia ??? a key regulatory factor in tumour growth, Nature Reviews Cancer, vol.18, issue.1, pp.38-47, 2002.
DOI : 10.1128/MCB.18.5.2845

B. Keith and M. C. Simon, Hypoxia-Inducible Factors, Stem Cells, and Cancer, Cell, vol.129, issue.3, pp.465-472, 2007.
DOI : 10.1016/j.cell.2007.04.019

URL : https://doi.org/10.1016/j.cell.2007.04.019

Z. Li, Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells, Cancer Cell, vol.15, issue.6, pp.501-513, 2009.
DOI : 10.1016/j.ccr.2009.03.018

URL : https://doi.org/10.1016/j.ccr.2009.03.018

K. J. Williams, Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1, Radiotherapy and Oncology, vol.75, issue.1, pp.89-98, 2005.
DOI : 10.1016/j.radonc.2005.01.009

R. Bernardi, PML inhibits HIF-1?? translation and neoangiogenesis through repression of mTOR, Nature, vol.9, issue.7104, pp.779-785, 2006.
DOI : 10.1038/nature03915

D. Papahadjopoulos, Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy., Proceedings of the National Academy of Sciences, vol.88, issue.24, pp.11460-11464, 1991.
DOI : 10.1073/pnas.88.24.11460

URL : http://www.pnas.org/content/88/24/11460.full.pdf

D. D. Lasic, Doxorubicin in sterically stabilized liposomes, Nature, vol.380, issue.6574, pp.561-562, 1996.
DOI : 10.1038/380561a0

N. Bertrand, Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology, Advanced Drug Delivery Reviews, vol.66, 2014.
DOI : 10.1016/j.addr.2013.11.009

, Adv. Drug Deliv. Rev, vol.66, pp.2-25

R. K. Jain and T. Stylianopoulos, Delivering nanomedicine to solid tumors, Nature Reviews Clinical Oncology, vol.3, issue.11, pp.653-664, 2010.
DOI : 10.1016/j.nano.2008.07.007

R. S. Mello, Radiation dose enhancement in tumors with iodine, Medical Physics, vol.10, issue.1, pp.75-78, 1983.
DOI : 10.1118/1.595378

A. Norman, X-ray phototherapy for canine brain masses, Radiation Oncology Investigations, vol.22, issue.1, pp.8-14, 1997.
DOI : 10.1016/0360-3016(94)90649-1

J. H. Rose, First radiotherapy of human metastatic brain tumors delivered by a computerized tomography scanner (CTRx) Int, 1999.

, J. Radiat. Oncol. Biol. Phys, vol.45, pp.1127-1132

J. Rousseau, Intracerebral delivery of 5-iodo-2???-deoxyuridine in??combination with synchrotron stereotactic radiation for the therapy of the F98 glioma, Journal of Synchrotron Radiation, vol.16, issue.4, pp.573-581, 2009.
DOI : 10.1107/S0909049509016987

URL : https://hal.archives-ouvertes.fr/inserm-00410444

M. S. Reza and T. L. Whateley, the brain, Journal of Microencapsulation, vol.32, issue.6, pp.789-801, 1998.
DOI : 10.1023/A:1005704913330

URL : https://hal.archives-ouvertes.fr/hal-00935640

D. Kwatra, Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer, Transl. Cancer Res, vol.2, pp.330-342, 2013.

Y. Zheng, Radiosensitization of DNA by Gold Nanoparticles Irradiated with High-Energy Electrons, Radiation Research, vol.169, issue.1, pp.19-27, 2008.
DOI : 10.1667/RR1080.1

D. Y. Joh, Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization Photoactivation of gold nanoparticles for glioma treatment, PLoS ONE Nanomed. Nanotechnol. Biol. Med, vol.8, issue.9, pp.1089-1097, 2013.

P. Mowat, <I>In Vitro</I> Radiosensitizing Effects of Ultrasmall Gadolinium Based Particles on Tumour Cells, Journal of Nanoscience and Nanotechnology, vol.11, issue.9, pp.7833-7839, 2011.
DOI : 10.1166/jnn.2011.4725

S. E. Gratton, The effect of particle design on cellular internalization pathways, Proceedings of the National Academy of Sciences, vol.40, issue.4, p.11613, 2008.
DOI : 10.1002/1097-0320(20000801)40:4<280::AID-CYTO4>3.0.CO;2-7

A. L. Papa, Effect of Reaction Parameters on Composition and Morphology of Titanate Nanomaterials, The Journal of Physical Chemistry C, vol.113, issue.29, pp.12682-12689, 2009.
DOI : 10.1021/jp903195h

URL : https://hal.archives-ouvertes.fr/hal-00404290

C. Mirjolet, The radiosensitization effect of titanate nanotubes as a new tool in radiation therapy for glioblastoma: A proof-of-concept, Radiotherapy and Oncology, vol.108, issue.1, pp.136-142, 2013.
DOI : 10.1016/j.radonc.2013.04.004

E. J. Park, Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells, Toxicology Letters, vol.180, issue.3, pp.222-229, 2008.
DOI : 10.1016/j.toxlet.2008.06.869

Q. Saquib, Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells, Toxicology in Vitro, vol.26, issue.2, pp.351-361, 2012.
DOI : 10.1016/j.tiv.2011.12.011

K. M. Ramkumar, Oxidative stress-mediated cytotoxicity and apoptosis induction by TiO2 nanofibers in HeLa cells, European Journal of Pharmaceutics and Biopharmaceutics, vol.81, issue.2, pp.324-333, 2012.
DOI : 10.1016/j.ejpb.2012.02.013

URL : http://orbit.dtu.dk/en/publications/oxidative-stressmediated-cytotoxicity-and-apoptosis-induction-by-tio2-nanofibers-in-hela-cells(2ced100f-496b-4aeb-898b-7eaa9511a3ee).html

S. A. Krueger, The Effects of G2-Phase Enrichment and Checkpoint Abrogation on Low-Dose Hyper-Radiosensitivity, International Journal of Radiation Oncology*Biology*Physics, vol.77, issue.5, pp.1509-1517, 2010.
DOI : 10.1016/j.ijrobp.2010.01.028

URL : http://europepmc.org/articles/pmc3818906?pdf=render

G. Charest, Concomitant treatment of F98 glioma cells with new liposomal platinum compounds and ionizing radiation, Journal of Neuro-Oncology, vol.53, issue.2, 2010.
DOI : 10.1017/S0317167100006715

URL : http://europepmc.org/articles/pmc3226798?pdf=render

, J. Neuro Oncol, vol.97, pp.187-193

H. E. Shahmabadi, Efficacy of Cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma, Tumor Biology, vol.28, issue.5, pp.4799-4806, 2014.
DOI : 10.1200/JCO.2009.22.4725

P. B. Chastagner, Comparison of doxorubicin and its nonpegylated liposomal form as radiosensitizer in high grade glioma xenografts, J. Clin. Oncol, vol.23, p.1524, 2005.

C. P. Beier, RNOP-09: Pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma - a phase II study, BMC Cancer, vol.17, issue.Suppl 4, p.308, 2009.
DOI : 10.1517/13543784.17.8.1225

Y. P. Hu, On the mechanism of action of doxorubicin encapsulation in nanospheres for the reversal of multidrug resistance, Cancer Chemotherapy and Pharmacology, vol.37, issue.6, pp.556-560, 1996.
DOI : 10.1007/s002800050428

K. Tahara, -lactide-co-glycolide) nanospheres to glioblastoma cells, Journal of Microencapsulation, vol.55, issue.1, pp.29-36, 2011.
DOI : 10.1016/j.brainres.2009.01.011

M. Zucchetti, Distribution of daunorubicin and daunorubicinol in human glioma tumors after administration of liposomal daunorubicin, Cancer Chemotherapy and Pharmacology, vol.44, issue.2, pp.173-176, 1999.
DOI : 10.1007/s002800050964

E. Garcion, A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats, Molecular Cancer Therapeutics, vol.5, issue.7, pp.1710-1722, 2006.
DOI : 10.1158/1535-7163.MCT-06-0289

URL : https://hal.archives-ouvertes.fr/hal-00129865

S. Vinchon-petit, In vivo evaluation of intracellular drug-nanocarriers infused into intracranial tumours by convection-enhanced delivery: distribution and radiosensitisation efficacy, Journal of Neuro-Oncology, vol.28, issue.2, pp.195-205, 2010.
DOI : 10.1016/S0360-3016(01)01597-8

C. Jin, Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro, Biomaterials, vol.28, issue.25, pp.3724-3730, 2007.
DOI : 10.1016/j.biomaterials.2007.04.032

P. Gabikian, Radiosensitization of malignant gliomas following intracranial delivery of paclitaxel biodegradable polymer microspheres, Journal of Neurosurgery, vol.5, issue.5, pp.1078-1085, 2014.
DOI : 10.1002/smll.201000028

G. Z. Gu, The influence of the penetrating peptide iRGD on the effect of paclitaxel-loaded MT1-AF7p-conjugated nanoparticles on glioma cells, Biomaterials, vol.34, issue.21, pp.5138-5148, 2013.
DOI : 10.1016/j.biomaterials.2013.03.036

X. Y. Jiang, PEGylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel for the treatment of advanced glioma: In vitro and in vivo evaluation, International Journal of Pharmaceutics, vol.420, issue.2, pp.385-394, 2011.
DOI : 10.1016/j.ijpharm.2011.08.052

H. Brem, Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas, The Lancet, vol.345, issue.8956, pp.1008-1012, 1995.
DOI : 10.1016/S0140-6736(95)90755-6

M. Westphal, A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma, Neuro-Oncology, vol.5, issue.2, pp.79-88, 2003.
DOI : 10.1159/000061237

P. Menei, Local and sustained delivery of 5-fluorouracil from biodegradable microspheres for the radiosensitization of glioblastoma, Cancer, vol.7, issue.2, pp.325-330, 1999.
DOI : 10.1093/oxfordjournals.annonc.a010610

P. Menei, Stereotaxic implantation of 5-fluorouracil-releasing microspheres in malignant glioma, Cancer, vol.52, issue.2, pp.405-410, 2004.
DOI : 10.1227/01.NEU.0000053211.39087.D1

P. Menei, Local and Sustained Delivery of 5-Fluorouracil from Biodegradable Microspheres for the Radiosensitization of Malignant Glioma: A Randomized Phase II Trial, Neurosurgery, vol.5, issue.Suppl 6, pp.242-247, 2005.
DOI : 10.1093/neuonc/5.2.79

S. Gaca, Targeting by cmHsp70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells, Journal of Controlled Release, vol.172, issue.1, pp.201-206, 2013.
DOI : 10.1016/j.jconrel.2013.08.020

Y. Ping, Inhibition of the EGFR with nanoparticles encapsulating antisense oligonucleotides of the EGFR enhances radiosensitivity in SCCVII cells, Medical Oncology, vol.12, issue.7, pp.715-721, 2010.
DOI : 10.1016/S0167-4889(96)00068-7

A. Griveau, Silencing of miR-21 by locked nucleic acid???lipid nanocapsule complexes sensitize human glioblastoma cells to radiation-induced cell death, International Journal of Pharmaceutics, vol.454, issue.2, pp.765-774, 2013.
DOI : 10.1016/j.ijpharm.2013.05.049

E. Ruoslahti, Specialization of tumour vasculature, Nature Reviews Cancer, vol.407, issue.2, pp.83-90, 2002.
DOI : 10.1038/35025220

E. Ruoslahti and M. D. Pierschbacher, Arg-Gly-Asp: A versatile cell recognition signal, Cell, vol.44, issue.4, pp.517-518, 1986.
DOI : 10.1016/0092-8674(86)90259-X

Z. Liu, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice, Nature Nanotechnology, vol.47, issue.1, pp.47-52, 2007.
DOI : 10.1007/BF00046364

C. F. Zhang, Specific Targeting of Tumor Angiogenesis by RGD-Conjugated Ultrasmall Superparamagnetic Iron Oxide Particles Using a Clinical 1.5-T Magnetic Resonance Scanner, Cancer Research, vol.67, issue.4, pp.1555-1562, 2007.
DOI : 10.1158/0008-5472.CAN-06-1668

X. M. Qian, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags, Nature Biotechnology, vol.100, issue.1, pp.83-90, 2008.
DOI : 10.1073/pnas.2232479100

S. Yang, Biomimetic, synthetic HDL nanostructures for lymphoma, Proceedings of the National Academy of Sciences, vol.468, issue.9, pp.2511-2516, 2013.
DOI : 10.1007/978-1-59745-249-6_5

R. Marega, Antibody-functionalized polymer-coated gold nanoparticles targeting cancer cells: an in vitro and in vivo study, Journal of Materials Chemistry, vol.12, issue.39, pp.21305-21312, 2012.
DOI : 10.1634/theoncologist.12-12-1379

L. Karmani, Zr-labeled anti-endoglin antibody-targeted gold nanoparticles for imaging cancer: implications for future cancer therapy, Nanomedicine, vol.29, issue.13, pp.1923-1937, 2014.
DOI : 10.1002/ijc.2910540303

L. Karmani, Zr-labeled cetuximab in mice, Contrast Media & Molecular Imaging, vol.34, issue.suppl 1, pp.402-408, 2013.
DOI : 10.1007/s00259-006-0271-7

T. A. Read, Local endostatin treatment of gliomas administered by microencapsulated producer cells, Nature Biotechnology, vol.97, issue.1, pp.29-34, 2001.
DOI : 10.1007/s004010050979

A. Kumar, Curcumin-loaded lipid nanocarrier for improving biovaibility, stability and cytotoxicity against malignant glioma cells. Drug Deliv, 2014.

M. T. Mirgani, Dendrosomal curcumin nanoformulation downregulates pluripotency genes via miR-145 activation in U87MG glioblastoma cells, Int. J. Nanomed, vol.9, pp.403-417, 2014.

F. Dilnawaz and S. K. Sahoo, Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model, European Journal of Pharmaceutics and Biopharmaceutics, vol.85, issue.3, pp.452-462, 2013.
DOI : 10.1016/j.ejpb.2013.07.013

K. J. Lim, A polymeric nanoparticle formulation of curcumin inhibits growth, clonogenicity and stem-like fraction in malignant brain tumors, Cancer Biology & Therapy, vol.62, issue.5, pp.464-473, 2011.
DOI : 10.1158/0008-5472.CAN-04-1364

E. A. Appel, Enhanced stability and activity of temozolomide in primary glioblastoma multiforme cells with cucurbit[n]uril, Chemical Communications, vol.33, issue.79, pp.9843-9845, 2012.
DOI : 10.1016/j.biomaterials.2012.02.030

J. S. Gill, Effects of NF??B decoy oligonucleotides released from biodegradable polymer microparticles on a glioblastoma cell line, Biomaterials, vol.23, issue.13, pp.2773-2781, 2002.
DOI : 10.1016/S0142-9612(02)00013-3

Y. Chen, Schedule-Dependent Pulsed Paclitaxel Radiosensitization for Thoracic Malignancy, American Journal of Clinical Oncology, vol.24, issue.5, pp.432-437, 2001.
DOI : 10.1097/00000421-200110000-00004

E. Ojima, The optimal schedule for 5-fluorouracil radiosensitization in colon cancer cell lines, Oncology Reports, vol.16, p.1085, 2006.
DOI : 10.3892/or.16.5.1085

S. Sofou, Radionuclide carriers for targeting of cancer, International Journal of Nanomedicine, vol.3, pp.181-199, 2008.
DOI : 10.2147/IJN.S2736

M. Vitucci, Cooperativity between MAPK and PI3K signaling activation is required for glioblastoma pathogenesis, Neuro-Oncology, vol.4, issue.11, pp.1317-1329, 2013.
DOI : 10.1371/journal.pone.0007752

URL : https://academic.oup.com/neuro-oncology/article-pdf/15/10/1317/4136848/not084.pdf

A. Carracedo, Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer, Journal of Clinical Investigation, vol.118, pp.3065-3074, 2008.
DOI : 10.1172/JCI34739DS1

I. Paul, Current Understanding on EGFR and Wnt/??-Catenin Signaling in Glioma and Their Possible Crosstalk, Genes & Cancer, vol.4, issue.11-12, pp.427-446, 2013.
DOI : 10.1177/1947601913503341

URL : http://europepmc.org/articles/pmc3877660?pdf=render

S. K. Roy, Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer, Journal of Molecular Signaling, vol.5, p.10, 2010.
DOI : 10.1186/1750-2187-5-10