W. Levinson, Review of Medical Microbiology and Immunology, 2014.

J. Fitzgerald, D. Sturdevant, S. Mackle, S. Gill, and J. Musser, Evolutionary genomics of Staphylococcus aureus: Insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic, Proceedings of the National Academy of Sciences, vol.25, issue.3, pp.8821-8826, 2001.
DOI : 10.1126/science.8093647

R. Gordon and F. Lowy, Infection, Clinical Infectious Diseases, vol.66, issue.S5, pp.350-359, 2008.
DOI : 10.1086/511041

URL : https://hal.archives-ouvertes.fr/hal-01690189

S. Jensen and B. Lyon, Future Microbiology, vol.30, issue.5, pp.565-582, 2009.
DOI : 10.1016/S0140-6736(06)68853-3

K. Hardy, P. Hawkey, F. Gao, and B. Oppenheim, Methicillin resistant Staphylococcus aureus in the critically ill, British Journal of Anaesthesia, vol.92, issue.1, pp.121-130, 2004.
DOI : 10.1093/bja/aeh008

P. Mygind, R. Fischer, and K. Schnorr, Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus, Nature, vol.8, issue.suppl., pp.975-980, 2005.
DOI : 10.1007/BF00228148

T. Schneider, T. Kruse, and R. Wimmer, Plectasin, a Fungal Defensin, Targets the Bacterial Cell Wall Precursor Lipid II, Science, vol.5, issue.4, pp.1168-1172, 2010.
DOI : 10.1038/nrd2004

Y. Xiong, W. Hady, and A. Deslandes, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.55, issue.11, pp.5325-5330, 2011.
DOI : 10.1128/AAC.00453-11

D. Andes, W. Craig, L. Nielsen, and H. Kristensen, In Vivo Pharmacodynamic Characterization of a Novel Plectasin Antibiotic, NZ2114, in a Murine Infection Model, Antimicrobial Agents and Chemotherapy, vol.53, issue.7, pp.3003-3009, 2009.
DOI : 10.1128/AAC.01584-08

C. Ostergaard, D. Sandvang, N. Frimodt-møller, and H. Kristensen, High Cerebrospinal Fluid (CSF) Penetration and Potent Bactericidal Activity in CSF of NZ2114, a Novel Plectasin Variant, during Experimental Pneumococcal Meningitis, Antimicrobial Agents and Chemotherapy, vol.53, issue.4, pp.1581-1585, 2009.
DOI : 10.1128/AAC.01202-08

K. Brinch, N. Frimodt-møller, N. Høiby, and H. Kristensen, Influence of Antidrug Antibodies on Plectasin Efficacy and Pharmacokinetics, Antimicrobial Agents and Chemotherapy, vol.53, issue.11, pp.4794-4800, 2009.
DOI : 10.1128/AAC.00440-09

URL : https://aac.asm.org/content/53/11/4794.full.pdf

K. Brinch, P. Tulkens, F. Van-bambeke, N. Frimodt-møller, N. Høiby et al., Intracellular activity of the peptide antibiotic NZ2114: studies with Staphylococcus aureus and human THP-1 monocytes, and comparison with daptomycin and vancomycin, Journal of Antimicrobial Chemotherapy, vol.55, issue.6, pp.1720-1724, 2010.
DOI : 10.1093/jac/dki094

S. Lociuro, S. Neve, S. Kjaerulf, and P. Nordkild, AP138, a second generation plectasin, shows good bactericidal properties and long post-antibiotic effect (PAE) in ATCC29213, Eur Cong Clin Microbiol Infect Dis, 2015.

P. Schlievert and M. Peterson, Glycerol Monolaurate Antibacterial Activity in Broth and Biofilm Cultures, PLoS ONE, vol.46, issue.7, p.40350, 2012.
DOI : 10.1371/journal.pone.0040350.t001

URL : http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0040350&type=printable

H. Preuss, B. Echard, and A. Dadgar, Studies, Toxicology Mechanisms and Methods, vol.340, issue.1, pp.279-285, 2005.
DOI : 10.1056/NEJM199902183400709

URL : https://hal.archives-ouvertes.fr/hal-00436212

D. Hess, M. Henry-stanley, and C. Wells, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.58, issue.11, pp.6970-6973, 2014.
DOI : 10.1128/AAC.03672-14

E. Mueller and P. Schlievert, Non-Aqueous Glycerol Monolaurate Gel Exhibits Antibacterial and Anti-Biofilm Activity against Gram-Positive and Gram-Negative Pathogens, PLOS ONE, vol.19, issue.2, p.120280, 2015.
DOI : 10.1371/journal.pone.0120280.g006

URL : https://doi.org/10.1371/journal.pone.0120280

A. Umerska, V. Cassisa, N. Matougui, M. Joly-guillou, M. Eveillard et al., Antibacterial action of lipid nanocapsules containing fatty acids or monoglycerides as co-surfactants, European Journal of Pharmaceutics and Biopharmaceutics, vol.108, pp.100-110, 2016.
DOI : 10.1016/j.ejpb.2016.09.001

URL : https://hal.archives-ouvertes.fr/hal-01413267

N. Matougui, L. Boge, and A. Groo, Lipid-based nanoformulations for peptide delivery, International Journal of Pharmaceutics, vol.502, issue.1-2, pp.80-97, 2016.
DOI : 10.1016/j.ijpharm.2016.02.019

URL : https://hal.archives-ouvertes.fr/hal-01392463

A. Umerska, C. Mouzouvi, A. Bigot, and P. Saulnier, Formulation and nebulization of fluticasone propionate-loaded lipid nanocarriers, International Journal of Pharmaceutics, vol.493, issue.1-2
DOI : 10.1016/j.ijpharm.2015.07.008

URL : https://hal.archives-ouvertes.fr/hal-01392459

, Int J Pharm, vol.493, issue.12, pp.224-232, 2015.

C. Valcourt, P. Saulnier, and A. Umerska, Synergistic interactions between doxycycline and terpenic components of essential oils encapsulated within lipid nanocapsules against gram negative bacteria, International Journal of Pharmaceutics, vol.498, issue.1-2
DOI : 10.1016/j.ijpharm.2015.11.042

URL : https://hal.archives-ouvertes.fr/hal-01388818

, Int J Pharm, vol.498, issue.12, pp.23-31, 2016.

A. Umerska, N. Matougui, A. Groo, and P. Saulnier, Understanding the adsorption of salmon calcitonin, antimicrobial peptide AP114 and polymyxin B onto lipid nanocapsules, International Journal of Pharmaceutics, vol.506, issue.1-2, pp.191-200, 2016.
DOI : 10.1016/j.ijpharm.2016.04.028

URL : https://hal.archives-ouvertes.fr/hal-01392465

L. Boge, H. Bysell, and L. Ringstad, Lipid-Based Liquid Crystals As Carriers for Antimicrobial Peptides: Phase Behavior and Antimicrobial Effect, Langmuir, vol.32, issue.17, pp.4217-4228, 2016.
DOI : 10.1021/acs.langmuir.6b00338

URL : https://hal.archives-ouvertes.fr/hal-01392483

R. White, D. Burgess, M. Manduru, and J. Bosso, Comparison of three different in vitro methods of detecting synergy: time-kill, checkerboard, and E test, Antimicrob Agents Chemother, vol.40, issue.8, pp.1914-1918, 1996.

I. Minkov, I. Tz, I. Panaiotov, J. Proust, and P. Saulnier, Reorganization of lipid nanocapsules at air???water interface, Colloids and Surfaces B: Biointerfaces, vol.45, issue.1, pp.14-23, 2005.
DOI : 10.1016/j.colsurfb.2005.03.009

I. Rampall, J. Smart, and D. Leighton, The influence of surface roughness on the particle-pair distribution function of dilute suspensions of non-colloidal spheres in simple shear flow, Journal of Fluid Mechanics, vol.339, pp.1-24, 1997.
DOI : 10.1017/S002211209600479X

S. Hartig, R. Greene, and J. Dasgupta, Multifunctional Nanoparticulate Polyelectrolyte Complexes, Pharmaceutical Research, vol.16, issue.2???3, pp.2353-2369, 2007.
DOI : 10.1177/153303460400300410

S. Saptarshi, A. Duschi, and A. Lopata, Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle, Journal of Nanobiotechnology, vol.11, issue.1, pp.26-38, 2013.
DOI : 10.1038/nnano.2010.164

M. Mahlapuu, J. Håkansson, L. Ringstad, and C. Björn, Antimicrobial Peptides: An Emerging Category of Therapeutic Agents, Frontiers in Cellular and Infection Microbiology, vol.17, p.194, 2016.
DOI : 10.2174/092986710790416290

A. Umerska, K. Paluch, M. Santos-martinez, C. Medina, O. Corrigan et al., Chondroitin-based nanoplexes as peptide delivery systems ??? Investigations into the self-assembly process, solid-state and extended release characteristics, European Journal of Pharmaceutics and Biopharmaceutics, vol.93, pp.242-253, 2015.
DOI : 10.1016/j.ejpb.2015.04.006

URL : https://bradscholars.brad.ac.uk/bitstream/10454/9416/1/Paluch_EJPB.pdf

A. Umerska, O. Corrigan, and L. Tajber, Design of chondroitin sulfate-based polyelectrolyte nanoplexes: Formation of nanocarriers with chitosan and a case study of salmon calcitonin, Carbohydrate Polymers, vol.156, pp.276-284, 2017.
DOI : 10.1016/j.carbpol.2016.09.035

O. Corrigan and L. Tajber, Intermolecular interactions between salmon calcitonin, hyaluronate, and chitosan and their impact on the process of formation and properties of peptide, International Journal of Nanomedicine, vol.33

, Int J Pharm, vol.477, issue.12, pp.102-112, 2014.

J. Sikkema, J. De-bont, and B. Poolman, Mechanisms of membrane toxicity of hydrocarbons, Microbiol Rev, vol.59, issue.2, pp.201-222, 1995.

P. Schlievert, J. Deringer, M. Kim, S. Projan, and R. Novick, Effect of glycerol monolaurate on bacterial growth and toxin production., Antimicrobial Agents and Chemotherapy, vol.36, issue.3, pp.626-631, 1992.
DOI : 10.1128/AAC.36.3.626

Y. Lin, P. Schlievert, and M. Anderson, Glycerol Monolaurate and Dodecylglycerol Effects on Staphylococcus aureus and Toxic Shock Syndrome Toxin-1 In Vitro and In Vivo, PLoS ONE, vol.51, issue.10, p.7499, 2009.
DOI : 10.1371/journal.pone.0007499.g006

S. Vetter and P. Schlievert, Glycerol Monolaurate Inhibits Virulence Factor Production in Bacillus anthracis, Antimicrobial Agents and Chemotherapy, vol.49, issue.4, pp.1302-1305, 2005.
DOI : 10.1128/AAC.49.4.1302-1305.2005

URL : https://aac.asm.org/content/49/4/1302.full.pdf

J. Kabara and R. Vrable, Antimicrobial lipids: Natural and synthetic fatty acids and monoglycerides, Lipids, vol.12, issue.9, pp.753-759, 1977.
DOI : 10.7883/yoken1952.29.25

D. Batovska, I. Todorova, I. Tsvetkova, and H. Najdenski, Antibacterial study of the medium chain fatty acids and their 1-monoglycerides: individual effects and synergistic relationships, Pol J Microbiol, vol.58, issue.1, pp.43-47, 2009.

S. Projan, S. Brown-skrobot, P. Schlievert, F. Vandenesch, and R. Novick, Glycerol monolaurate inhibits the production of beta-lactamase, toxic shock toxin-1, and other staphylococcal exoproteins by interfering with signal transduction., Journal of Bacteriology, vol.176, issue.14, pp.4204-4209, 1994.
DOI : 10.1128/jb.176.14.4204-4209.1994

G. Bergsson, J. Arfinnsson, Ó. Steingrímsson, and H. Thormar, Killing of Gram-positive cocci by fatty acids and monoglyceridesNote, APMIS, vol.109, issue.10, pp.670-678, 2001.
DOI : 10.1034/j.1600-0463.2001.d01-131.x

C. Gottlieb, L. Thomsen, H. Ingmer, P. Mygind, H. Kristensen et al., Antimicrobial peptides effectively kill a broad spectrum of Listeria monocytogenes and Staphylococcus aureus strains independently of origin, sub-type, or virulence factor expression, BMC Microbiology, vol.8, issue.1, p.205, 2008.
DOI : 10.1186/1471-2180-8-205

Y. Zhang, D. Teng, and R. Mao, High expression of a plectasin-derived peptide NZ2114 in Pichia pastoris and its pharmacodynamics, postantibiotic and synergy against Staphylococcus aureus, Applied Microbiology and Biotechnology, vol.1788, issue.2, pp.681-694, 2014.
DOI : 10.1016/j.bbamem.2008.10.015

M. Zasloff, Antimicrobial peptides of multicellular organisms, Nature, vol.415, issue.6870, pp.389-395, 2002.
DOI : 10.1038/415389a

R. Hancock and H. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nature Biotechnology, vol.49, issue.12, pp.1551-1557, 2006.
DOI : 10.1016/j.bbamem.2006.03.027

V. Nizet, Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets, Journal of Allergy and Clinical Immunology, vol.120, issue.1, pp.13-22, 2007.
DOI : 10.1016/j.jaci.2007.06.005

M. Pasupuleti, A. Schmidtchen, and M. Malmsten, Antimicrobial peptides: key components of the innate immune system, Critical Reviews in Biotechnology, vol.15, issue.1, pp.143-171, 2012.
DOI : 10.1007/s10989-009-9180-5

D. Andersson, D. Hughes, and J. Kubicek-sutherland, Mechanisms and consequences of bacterial resistance to antimicrobial peptides, Drug Resistance Updates, vol.26, pp.43-57, 2016.
DOI : 10.1016/j.drup.2016.04.002

A. Peschel, R. Jack, and M. Otto, Resistance to Human Defensins and Evasion of Neutrophil Killing via the Novel Virulence Factor Mprf Is Based on Modification of Membrane Lipids with l-Lysine, The Journal of Experimental Medicine, vol.175, issue.9, pp.1067-1076, 2001.
DOI : 10.1128/jb.175.10.3208-3212.1993

A. Ruzin and R. Novick, Glycerol monolaurate inhibits induction of vancomycin resistance in Enterococcus faecalis, J Bacteriol, vol.180, issue.1, pp.182-185, 1998.