R. L. Siegel, K. D. Miller, and A. , Cancer statistics, 2016, Cancer statistics, pp.7-30, 2016.
DOI : 10.3322/caac.20134

URL : http://onlinelibrary.wiley.com/doi/10.3322/caac.21332/pdf

J. Ferlay, F. Bray, P. Pisani, and D. M. Parkin, Cancer Incidence, Mortality, and Prevalence Worldwide, 2000.

R. L. Mort, I. J. Jackson, and E. E. Patton, The melanocyte lineage in development and disease, Development, vol.142, issue.7, p.1387, 2015.
DOI : 10.1242/dev.123729

A. N. Houghton and D. Polsky, Focus on melanoma, Cancer Cell, vol.2, issue.4, pp.275-278, 2002.
DOI : 10.1016/S1535-6108(02)00161-7

M. Mihajlovic, S. Vlajkovic, P. Jovanovic, and V. Stefanovic, Primary mucosal melanomas: a comprehensive review, Int. J. Clin. Exp. Pathol, vol.5, issue.8, pp.739-753, 2012.

M. B. Faries and S. Ariyan, Current Surgical Treatment in Melanoma, Current Problems in Cancer, vol.35, issue.4, pp.173-184, 2011.
DOI : 10.1016/j.currproblcancer.2011.07.002

J. A. Sosman, K. B. Kim, L. Schuchter, R. Gonzalez, A. C. Pavlick et al.,

Y. Lawrence, F. Shyr, J. Ye, K. B. Li, R. J. Nolop et al.,

, J. Med, vol.366, issue.8, pp.707-714, 2012.

G. A. Mcarthur, P. B. Chapman, C. Robert, J. Larkin, J. B. Haanen et al., Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study, The Lancet Oncology, vol.15, issue.3, pp.323-332, 2014.
DOI : 10.1016/S1470-2045(14)70012-9

D. Grossman and D. C. Altieri, Drug resistance in melanoma: mechanisms, apoptosis, and new potential therapeutic targets, Cancer Metastasis Rev, vol.20, pp.1-2, 2001.

R. Somasundaram, J. Villanueva, and M. Herlyn, Intratumoral Heterogeneity as a Therapy Resistance Mechanism, Adv. Pharmacol, vol.65, pp.335-359, 2012.
DOI : 10.1016/B978-0-12-397927-8.00011-7

URL : http://europepmc.org/articles/pmc3677516?pdf=render

J. Read, Recent advances in cutaneous melanoma: towards a molecular model and targeted treatment, Australasian Journal of Dermatology, vol.481, issue.Suppl. 6, pp.163-172, 2013.
DOI : 10.1038/nature10762

K. T. Flaherty, I. Puzanov, K. B. Kim, A. Ribas, G. A. Mcarthur et al., Inhibition of Mutated, Activated BRAF in Metastatic Melanoma, New England Journal of Medicine, vol.363, issue.9, pp.809-819, 2010.
DOI : 10.1056/NEJMoa1002011

P. B. Chapman, A. Hauschild, C. Robert, J. B. Haanen, P. Ascierto et al.,

D. Jouary, A. Schadendorf, S. J. Ribas, J. A. O-'day, J. M. Sosman et al., Improved survival with vemurafenib in melanoma with BRAF V600E mutation, N. Engl. J. Med, issue.26, pp.364-2507, 2011.

J. Larkin, P. A. Ascierto, B. Dreno, V. Atkinson, G. Liszkay et al., -Mutated Melanoma, New England Journal of Medicine, vol.371, issue.20, pp.371-1867, 2014.
DOI : 10.1056/NEJMoa1408868

T. M. Medina and K. D. Lewis, The evolution of combined molecular targeted therapies to advance the therapeutic efficacy in melanoma: a highlight of vemurafenib and cobimetinib, Onco Targets Ther, vol.9, pp.3739-3752, 2016.

A. J. Olszanski, Current and Future Roles of Targeted Therapy and Immunotherapy in Advanced Melanoma, Journal of Managed Care Pharmacy, vol.20, issue.4, pp.346-356, 2014.
DOI : 10.18553/jmcp.2014.20.4.346

F. S. Hodi, S. J. O-'day, D. F. Mcdermott, R. W. Weber, J. A. Sosman et al., Improved Survival with Ipilimumab in Patients with Metastatic Melanoma, New England Journal of Medicine, vol.363, issue.8, pp.363-711, 2010.
DOI : 10.1056/NEJMoa1003466

J. S. Weber, K. C. Kahler, and A. Hauschild, Management of Immune-Related Adverse Events and Kinetics of Response With Ipilimumab, Journal of Clinical Oncology, vol.30, issue.21, pp.2691-2697, 2012.
DOI : 10.1200/JCO.2012.41.6750

J. S. Wilmott, G. V. Long, J. R. Howle, L. E. Haydu, R. N. Sharma et al., Selective BRAF Inhibitors Induce Marked T-cell Infiltration into Human Metastatic Melanoma, Clinical Cancer Research, vol.18, issue.5, pp.1386-1394, 2012.
DOI : 10.1158/1078-0432.CCR-11-2479

URL : http://clincancerres.aacrjournals.org/content/clincanres/18/5/1386.full.pdf

A. Ribas, F. S. Hodi, M. Callahan, C. Konto, and J. Wolchok, Hepatotoxicity with Combination of Vemurafenib and Ipilimumab, New England Journal of Medicine, vol.368, issue.14, pp.1365-1366, 2013.
DOI : 10.1056/NEJMc1302338

URL : http://www.nejm.org/doi/pdf/10.1056/NEJMc1302338

M. A. Postow, J. Chesney, A. C. Pavlick, C. Robert, K. Grossmann et al., Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma, New England Journal of Medicine, vol.372, issue.21, pp.372-2006, 2015.
DOI : 10.1056/NEJMoa1414428

URL : http://europepmc.org/articles/pmc5744258?pdf=render

J. Norgauer, B. Metzner, and I. Schraufstatter, Expression and growth-promoting function of the IL-8 receptor beta in human melanoma cells, J. Immunol, vol.156, issue.3, pp.1132-1137, 1996.

C. R. Justus, E. J. Sanderlin, and L. V. Yang, Molecular Connections between Cancer Cell Metabolism and the Tumor Microenvironment, International Journal of Molecular Sciences, vol.8, issue.12, pp.11055-11086, 2015.
DOI : 10.1016/j.diff.2011.02.005

URL : http://www.mdpi.com/1422-0067/16/5/11055/pdf

M. Fukunaga-kalabis, A. Santiago-walker, and M. Herlyn, Matricellular Proteins Produced by Melanocytes and Melanomas: In Search for Functions, Cancer Microenvironment, vol.131, issue.Suppl, pp.93-102, 2008.
DOI : 10.1091/mbc.6.3.327

URL : https://link.springer.com/content/pdf/10.1007%2Fs12307-008-0009-0.pdf

M. R. Junttila and F. J. De-sauvage, Influence of tumour micro-environment heterogeneity on therapeutic response, Nature, vol.37, issue.7467, pp.346-354, 2013.
DOI : 10.1038/ng1596

R. Straussman, T. Morikawa, K. Shee, M. Barzily-rokni, Z. R. Qian et al., Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion, Nature, vol.4, issue.7408, pp.500-504, 2012.
DOI : 10.1038/nrd1609

URL : http://europepmc.org/articles/pmc3711467?pdf=render

M. B. Meads, R. A. Gatenby, and W. S. Dalton, Environment-mediated drug resistance: a major contributor to minimal residual disease, Nature Reviews Cancer, vol.112, issue.9, pp.665-674, 2009.
DOI : 10.1038/nrm1229

F. Shojaei, X. Wu, A. K. Malik, C. Zhong, M. E. Baldwin et al., Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells, Nature Biotechnology, vol.417, issue.8, pp.25-911, 2007.
DOI : 10.1007/978-1-4615-2952-1_7

R. K. Jain, Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy, Science, vol.307, issue.5706, pp.58-62, 2005.
DOI : 10.1126/science.1104819

A. Swami, J. Shi, S. Gadde, A. R. Votruba, N. Kolishetti et al., Nanoparticles for Targeted and Temporally Controlled Drug Delivery, Nanostruct. Sci. Technol, pp.9-29, 2012.
DOI : 10.1007/978-1-4614-2305-8_2

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer et al., Renal clearance of quantum dots, pp.25-1165, 2007.

H. Harashima, K. Sakata, K. Funato, and H. Kiwada, Enhanced hepatic uptake of liposomes through complement activation depending on the size of liposomes, Pharmaceutical Research, vol.11, issue.3, pp.402-406, 1994.
DOI : 10.1023/A:1018965121222

D. V. Devine, K. Wong, K. Serrano, A. Chonn, and P. R. Cullis, Liposome???complement interactions in rat serum: implications for liposome survival studies, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1191, issue.1, pp.43-51, 1994.
DOI : 10.1016/0005-2736(94)90231-3

R. N. Saha, S. Vasanthakumar, G. Bende, and M. Snehalatha, Nanoparticulate drug delivery systems for cancer chemotherapy, Molecular Membrane Biology, vol.294, issue.2, pp.215-231, 2010.
DOI : 10.1016/j.ijpharm.2005.01.020

V. Mundra, Y. Peng, S. Rana, A. Natarajan, and R. I. Mahato, Micellar formulation of indocyanine green for phototherapy of melanoma, Journal of Controlled Release, vol.220, pp.130-140, 2015.
DOI : 10.1016/j.jconrel.2015.10.029

X. Shan, Y. Yuan, C. Liu, X. Tao, Y. Sheng et al., Influence of PEG chain on the complement activation suppression and longevity in vivo prolongation of the PCL biomedical nanoparticles, Biomedical Microdevices, vol.60, issue.3, pp.1187-1194, 2009.
DOI : 10.1016/j.biomaterials.2007.12.022

R. R. Arvizo, O. R. Miranda, D. F. Moyano, C. A. Walden, K. Giri et al., Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles, PLoS ONE, vol.10, issue.7, p.24374, 2011.
DOI : 10.1371/journal.pone.0024374.s003

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0024374&type=printable

K. Xiao, Y. Li, J. Luo, J. S. Lee, W. Xiao et al., The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles, Biomaterials, vol.32, issue.13, pp.3435-3446, 2011.
DOI : 10.1016/j.biomaterials.2011.01.021

F. Lacoeuille, E. Garcion, J. P. Benoit, and A. Lamprecht, Lipid nanocapsules for intracellular drug delivery of anticancer drugs, J. Nanosci. Nanotechnol, vol.7, issue.12, pp.4612-4617, 2007.

G. Lollo, M. Vincent, G. Ullio-gamboa, L. Lemaire, F. Franconi et al., Development of multifunctional lipid nanocapsules for the co-delivery of paclitaxel and CpG-ODN in the treatment of glioblastoma., International Journal of Pharmaceutics, vol.495, issue.2, pp.972-980, 2015.
DOI : 10.1016/j.ijpharm.2015.09.062

URL : https://hal.archives-ouvertes.fr/hal-01392247

J. Hureaux, F. Lagarce, F. Gagnadoux, M. C. Rousselet, V. Moal et al., Toxicological Study and Efficacy of Blank and Paclitaxel-Loaded Lipid Nanocapsules After i.v. Administration in Mice, Pharmaceutical Research, vol.71, issue.3, pp.421-430, 2010.
DOI : 10.1002/jbm.a.30711

M. L. Occhiutto, F. R. Freitas, P. P. Lima, R. C. Maranhao, and V. P. Costa, Paclitaxel Associated With Lipid Nanoparticles as a New Antiscarring Agent in Experimental Glaucoma Surgery, Investigative Opthalmology & Visual Science, vol.57, issue.3, pp.971-978, 2016.
DOI : 10.1167/iovs.15-18671

URL : http://iovs.arvojournals.org/data/journals/iovs/935065/i1552-5783-57-3-971.pdf

W. Xu and M. Lee, Development and evaluation of lipid nanoparticles for paclitaxel delivery: a comparison between solid lipid nanoparticles and nanostructured lipid carriers, Journal of Pharmaceutical Investigation, vol.361, issue.1???2, pp.675-680, 2015.
DOI : 10.1016/j.ijpharm.2008.06.002

P. Resnier, P. Lequinio, N. Lautram, E. Andre, C. Gaillard et al., Efficient in vitro gene therapy with PEG siRNA lipid nanocapsules for passive targeting strategy in melanoma, Biotechnology Journal, vol.65, issue.11, pp.1389-1401, 2014.
DOI : 10.1016/S0168-3659(99)00248-5

L. Mei, Y. Liu, H. Zhang, Z. Zhang, H. Gao et al., Antitumor and Antimetastasis Activities of Heparin-based Micelle Served As Both Carrier and Drug, ACS Applied Materials & Interfaces, vol.8, issue.15, pp.9577-9589, 2016.
DOI : 10.1021/acsami.5b12347

M. Talelli, M. Iman, A. K. Varkouhi, C. J. Rijcken, R. M. Schiffelers et al., Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin, Biomaterials, vol.31, issue.30, pp.7797-7804, 2010.
DOI : 10.1016/j.biomaterials.2010.07.005

G. Battogtokh and Y. T. Ko, Self-Assembling Micelle-like Nanoparticles with Detachable Envelopes for Enhanced Delivery of Nucleic Acid Therapeutics, Molecular Pharmaceutics, vol.11, issue.3, pp.904-912, 2014.
DOI : 10.1021/mp400579h

K. Van-butsele, P. Sibret, C. A. Fustin, J. F. Gohy, C. Passirani et al., Synthesis and pH-dependent micellization of diblock copolymer mixtures, Journal of Colloid and Interface Science, vol.329, issue.2, pp.235-243, 2009.
DOI : 10.1016/j.jcis.2008.09.080

URL : https://hal.archives-ouvertes.fr/inserm-00343572

S. Cajot, K. Van-butsele, A. Paillard, C. Passirani, E. Garcion et al., Smart nanocarriers for pH-triggered targeting and release of hydrophobic drugs, Acta Biomaterialia, vol.8, issue.12, pp.4215-4223, 2012.
DOI : 10.1016/j.actbio.2012.08.049

J. Schittenhelm, A. Klein, M. S. Tatagiba, R. Meyermann, F. Fend et al., Comparing the expression of integrins v3, v5, v6, v8, fibronectin and fibrinogen in human brain metastases and their corresponding primary tumors, Int. J. Clin. Exp. Pathol, vol.6, issue.12, pp.2719-2732, 2013.

K. Shi, J. Li, Z. Cao, P. Yang, Y. Qiu et al., A pH-responsive cell-penetrating peptide-modified liposomes with active recognizing of integrin ?? v ?? 3 for the treatment of melanoma, Journal of Controlled Release, vol.217, pp.138-150, 2015.
DOI : 10.1016/j.jconrel.2015.09.009

J. X. Chen, M. Wang, H. H. Tian, and J. H. Chen, Hyaluronic acid and polyethylenimine self-assembled polyion complexes as pH-sensitive drug carrier for cancer therapy, Colloids and Surfaces B: Biointerfaces, vol.134, pp.81-87, 2015.
DOI : 10.1016/j.colsurfb.2015.06.039

C. Y. Chen, T. H. Kim, W. C. Wu, C. M. Huang, H. Wei et al., pH-dependent, thermosensitive polymeric nanocarriers for drug delivery to solid tumors, Biomaterials, vol.34, issue.18, pp.4501-4509, 2013.
DOI : 10.1016/j.biomaterials.2013.02.049

URL : http://europepmc.org/articles/pmc3620673?pdf=render

Y. Zhao, T. Ji, H. Wang, S. Li, Y. Zhao et al., Self-assembled peptide nanoparticles as tumor microenvironment activatable probes for tumor targeting and imaging, Journal of Controlled Release, vol.177, issue.1, pp.11-19, 2014.
DOI : 10.1016/j.jconrel.2013.12.037

Y. Mi, J. Wolfram, C. Mu, X. Liu, E. Blanco et al., Enzyme-responsive multistage vector for drug delivery to tumor tissue, Pharmacological Research, vol.113, pp.92-99, 2016.
DOI : 10.1016/j.phrs.2016.08.024

URL : https://manuscript.elsevier.com/S1043661816308143/pdf/S1043661816308143.pdf

S. Ruan, X. Cao, X. Cun, G. Hu, Y. Zhou et al., Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release, Biomaterials, vol.60, pp.100-110, 2015.
DOI : 10.1016/j.biomaterials.2015.05.006

H. Yu, J. Chen, S. Liu, Q. Lu, J. He et al., Enzyme sensitive, surface engineered nanoparticles for enhanced delivery of camptothecin, Journal of Controlled Release, vol.216, pp.111-120, 2015.
DOI : 10.1016/j.jconrel.2015.08.021

B. Ding, X. Wu, W. Fan, Z. Wu, J. Gao et al., Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity, Int. J. Nanomed, vol.6, pp.1991-2005, 2011.

B. Ding, W. Zhang, X. Wu, J. Wang, C. Xie et al., DR5 mAb-conjugated, DTIC-loaded immuno-nanoparticles effectively and specifically kill malignant melanoma cells <i>in vivo</i>, Oncotarget, vol.7, issue.35, pp.57160-57170, 2016.
DOI : 10.18632/oncotarget.11014

URL : http://europepmc.org/articles/pmc5302980?pdf=render

P. Saraf, X. Li, L. Wrischnik, and B. Jasti, In Vitro and In Vivo Efficacy of Self-Assembling RGD Peptide Amphiphiles for Targeted Delivery of Paclitaxel, Pharmaceutical Research, vol.8, issue.6, pp.3087-3101, 2015.
DOI : 10.1016/j.nano.2011.11.005

C. H. Lin, S. A. Al-suwayeh, C. F. Hung, C. C. Chen, and J. , Camptothecin-Loaded Liposomes with ??-Melanocyte-Stimulating Hormone Enhance Cytotoxicity Toward and Cellular Uptake by Melanomas: An Application of Nanomedicine on Natural Product, Journal of Traditional and Complementary Medicine, vol.3, issue.2, pp.102-109, 2013.
DOI : 10.4103/2225-4110.110423

URL : https://doi.org/10.4103/2225-4110.110423

S. Pawar and P. Vavia, Glucosamine anchored cancer targeted nano-vesicular drug delivery system of doxorubicin, Journal of Drug Targeting, vol.42, issue.1, pp.68-79, 2016.
DOI : 10.1021/jm0306430

M. Volkova and R. Russell, Anthracycline Cardiotoxicity: Prevalence, Pathogenesis and Treatment, Current Cardiology Reviews, vol.7, issue.4, pp.214-220, 2011.
DOI : 10.2174/157340311799960645

URL : http://europepmc.org/articles/pmc3322439?pdf=render

M. E. O-'brien, N. Wigler, M. Inbar, R. Rosso, E. Grischke et al., Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYXTM/Doxil") versus conventional doxorubicin for first-line treatment of metastatic breast cancer, Annals of Oncology, vol.15, issue.3, pp.440-449, 2004.
DOI : 10.1093/annonc/mdh097

M. Longmire, P. L. Choyke, and H. Kobayashi, Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats, Nanomedicine, vol.3, issue.5, pp.703-717, 2008.
DOI : 10.1021/ja710193c

URL : http://europepmc.org/articles/pmc3407669?pdf=render

V. P. Zhdanov and N. J. Cho, Kinetics of the formation of a protein corona around nanoparticles, Mathematical Biosciences, vol.282, pp.82-90, 2016.
DOI : 10.1016/j.mbs.2016.09.018

A. Thakkar, S. Chenreddy, A. Thio, W. Khamas, J. Wang et al., Preclinical systemic toxicity evaluation of chitosan-solid lipid nanoparticle-encapsulated aspirin and curcumin in combination with free sulforaphane in BALB/c mice, Int. J. Nanomed, pp.11-3265, 2016.

H. Xu, M. Hu, X. Yu, Y. Li, Y. Fu et al., Design and evaluation of pH-sensitive liposomes constructed by poly(2-ethyl-2-oxazoline)-cholesterol hemisuccinate for doxorubicin delivery, European Journal of Pharmaceutics and Biopharmaceutics, vol.91, issue.3, pp.66-74, 2015.
DOI : 10.1016/j.ejpb.2015.01.030

Q. M. Wang, Z. Gao, S. Liu, B. Fan, L. Kang et al., Hybrid polymeric micelles based on bioactive polypeptides as pH-responsive delivery systems against melanoma, Biomaterials, vol.35, issue.25, pp.7008-7021, 2014.
DOI : 10.1016/j.biomaterials.2014.04.117

W. Poon, X. Zhang, D. Bekah, J. G. Teodoro, and J. L. Nadeau, Targeting B16 tumors in vivo with peptide-conjugated gold nanoparticles, Nanotechnology, vol.26, issue.28, 2015.
DOI : 10.1088/0957-4484/26/28/285101

T. Shen, S. Guan, Z. Gan, G. Zhang, and Q. Yu, Polymeric Micelles with Uniform Surface Properties and Tunable Size and Charge: Positive Charges Improve Tumor Accumulation, Biomacromolecules, vol.17, issue.5, pp.1801-1810, 2016.
DOI : 10.1021/acs.biomac.6b00234

Q. Liu, H. Li, Q. Xia, Y. Liu, and K. Xiao, Role of surface charge in determining the biological effects of CdSe/ZnS quantum dots, Int. J. Nanomed, vol.10, pp.7073-7088, 2015.

C. R. Miller, B. Bondurant, S. D. Mclean, K. A. Mcgovern, and D. F. O-'brien, Biochemistry, vol.37, issue.37, pp.12875-12883, 1998.
DOI : 10.1021/bi980096y

L. Chen, J. M. Mccrate, J. C. Lee, and H. Li, The role of surface charge on the uptake and biocompatibility of hydroxyapatite nanoparticles with osteoblast cells, Nanotechnology, vol.22, issue.10, 2011.
DOI : 10.1088/0957-4484/22/10/105708

R. R. Arvizo, O. R. Miranda, M. A. Thompson, C. M. Pabelick, R. Bhattacharya et al., Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond, Nano Letters, vol.10, issue.7, pp.2543-2548, 2010.
DOI : 10.1021/nl101140t

K. Knop, R. Hoogenboom, D. Fischer, and U. S. Schubert, Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives, Angewandte Chemie International Edition, vol.61, issue.36, pp.6288-6308, 2010.
DOI : 10.3109/10731199009117287

A. Abuchowski, J. R. Mccoy, N. C. Palczuk, T. Van-es, and F. F. Davis, Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase, J. Biol. Chem, vol.252, issue.11, pp.3582-3586, 1977.

A. Vonarbourg, C. Passirani, P. Saulnier, and J. P. Benoit, Parameters influencing the stealthiness of colloidal drug delivery systems, Biomaterials, vol.27, issue.24, pp.4356-4373, 2006.
DOI : 10.1016/j.biomaterials.2006.03.039

H. Lee and R. G. Larson, Adsorption of Plasma Proteins onto PEGylated Lipid Bilayers: The Effect of PEG Size and Grafting Density, Biomacromolecules, vol.17, issue.5, pp.1757-1765, 2016.
DOI : 10.1021/acs.biomac.6b00146

H. Wu, J. R. Infante, V. L. Keedy, S. F. Jones, E. Chan et al., Burris 3rd, Population pharmacokinetics of PEGylated liposomal CPT-11 (IHL-305) in patients with advanced solid tumors, Eur, J. Clin. Pharmacol, issue.12, pp.69-2073, 2013.
DOI : 10.1007/s00228-013-1580-y

J. R. Infante, V. L. Keedy, S. F. Jones, W. C. Zamboni, E. Chan et al., Phase I and pharmacokinetic study of IHL-305 (PEGylated liposomal irinotecan) in patients with advanced solid tumors, Cancer Chemotherapy and Pharmacology, vol.25, issue.4, pp.699-705, 2012.
DOI : 10.1634/theoncologist.2007-0180

J. Yang, Y. Shi, C. Li, L. Gui, X. Zhao et al., Phase I clinical trial of pegylated liposomal mitoxantrone plm60-s: pharmacokinetics, toxicity and preliminary efficacy, Cancer Chemotherapy and Pharmacology, vol.18, issue.6, pp.637-646, 2014.
DOI : 10.1016/j.addr.2011.06.017

T. Golan, T. Grenader, P. Ohana, Y. Amitay, H. Shmeeda et al., Pegylated liposomal mitomycin C prodrug enhances tolerance of mitomycin C: a phase 1 study in advanced solid tumor patients, Cancer Medicine, vol.61, issue.10, pp.1472-1483, 2015.
DOI : 10.1007/s00280-007-0525-5

J. L. Lee, J. H. Ahn, S. H. Park, H. Y. Lim, J. H. Kwon et al., Phase II study of a cremophor-free, polymeric micelle formulation of paclitaxel for patients with advanced urothelial cancer previously treated with gemcitabine and platinum, Investigational New Drugs, vol.28, issue.11, pp.1984-1990, 2012.
DOI : 10.1200/JCO.2009.25.4599

R. A. Ishak, G. A. Awad, N. M. Zaki, H. El-shamy-ael, and N. D. Mortada, A comparative study of chitosan shielding effect on nano-carriers hydrophilicity and biodistribution, Carbohydrate Polymers, vol.94, issue.1, pp.669-676, 2013.
DOI : 10.1016/j.carbpol.2013.01.072

P. H. Kierstead, H. Okochi, V. J. Venditto, T. C. Chuong, S. Kivimae et al., The effect of polymer backbone chemistry on the induction of the accelerated blood clearance in polymer modified liposomes, Journal of Controlled Release, vol.213, pp.1-9, 2015.
DOI : 10.1016/j.jconrel.2015.06.023

W. Zhang, G. Wang, E. See, J. P. Shaw, B. C. Baguley et al., Post-insertion of poloxamer 188 strengthened liposomal membrane and reduced drug irritancy and in vivo precipitation, superior to PEGylation, Journal of Controlled Release, vol.203, pp.161-169, 2015.
DOI : 10.1016/j.jconrel.2015.02.026

P. Kolhar, A. C. Anselmo, V. Gupta, K. Pant, B. Prabhakarpandian et al., Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium, Proceedings of the National Academy of Sciences, vol.24, issue.4826, pp.110-10753, 2013.
DOI : 10.1002/adma.201200607

URL : http://www.pnas.org/content/110/26/10753.full.pdf

T. P. Herringson and J. G. Altin, Increasing the antitumor efficacy of doxorubicin-loaded liposomes with peptides anchored via a chelator lipid, Journal of Drug Targeting, vol.8, issue.8, pp.681-689, 2011.
DOI : 10.2217/17435889.2.3.345

A. A. Lohade, R. R. Jain, K. Iyer, S. K. Roy, H. H. Shimpi et al., A Novel Folate-Targeted Nanoliposomal System of Doxorubicin for Cancer Targeting, AAPS PharmSciTech, vol.17, issue.6, pp.1298-1311, 2016.
DOI : 10.1208/s12249-015-0462-2

S. Pawar, G. Shevalkar, and P. Vavia, Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: pharmacokinetic, toxicity and pharmacodynamic evaluation, Journal of Drug Targeting, vol.279, issue.8, pp.730-743, 2016.
DOI : 10.1016/j.ijpharm.2012.05.078

B. Heurtault, P. Saulnier, B. Pech, M. Venier-julienne, J. Proust et al., The influence of lipid nanocapsule composition on their size distribution, Eur, J. Pharm. Sci, vol.18, issue.1, pp.55-61, 2003.
DOI : 10.1016/s0928-0987(02)00241-5

H. G. Rennke and M. A. Venkatachalam, Structural determinants of glomerular permselectivity, Fed. Proc, vol.36, issue.12, pp.2519-2526, 1977.

M. Ohlson, J. Sorensson, and B. Haraldsson, A gel-membrane model of glomerular charge and size selectivity in series, American Journal of Physiology-Renal Physiology, vol.254, issue.3, pp.396-405, 2001.
DOI : 10.1016/0301-4622(90)80052-9

L. T. Chen and L. Weiss, The role of the sinus wall in the passage of erythrocytes through the spleen, Blood, vol.41, issue.4, pp.529-537, 1973.

C. He, Y. Hu, L. Yin, C. Tang, and C. , Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles, Biomaterials, vol.31, issue.13, pp.3657-3666, 2010.
DOI : 10.1016/j.biomaterials.2010.01.065

A. Vonarbourg, C. Passirani, P. Saulnier, P. Simard, J. C. Leroux et al., Evaluation of pegylated lipid nanocapsules versus complement system activation and macrophage uptake, Journal of Biomedical Materials Research Part A, vol.21, issue.3, pp.620-628, 2006.
DOI : 10.1007/978-1-4613-2433-1_26

H. Hillaireau and P. Couvreur, Nanocarriers??? entry into the cell: relevance to drug delivery, Cellular and Molecular Life Sciences, vol.31, issue.Suppl 1, pp.2873-2896, 2009.
DOI : 10.1111/j.1768-322X.1987.tb00571.x

K. Murugan, Y. E. Choonara, P. Kumar, D. Bijukumar, L. C. Du-toit et al., Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures, Int. J. Nanomed, vol.10, pp.2191-2206, 2015.

J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra, Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis, Biochemical Journal, vol.377, issue.1, pp.159-169, 2004.
DOI : 10.1042/bj20031253

G. Sahay, D. Y. Alakhova, and A. V. Kabanov, Endocytosis of nanomedicines, Journal of Controlled Release, vol.145, issue.3, pp.182-195, 2010.
DOI : 10.1016/j.jconrel.2010.01.036

URL : http://europepmc.org/articles/pmc2902597?pdf=render

C. Passirani, G. Barratt, J. P. Devissaguet, and D. Labarre, Interactions of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate) with the complement system, Life Sciences, vol.62, issue.8, pp.775-785, 1998.
DOI : 10.1016/S0024-3205(97)01175-2

R. Toy, P. M. Peiris, K. B. Ghaghada, and E. Karathanasis, journey of nanoparticles, Nanomedicine, vol.2535, issue.1, pp.121-134, 2014.
DOI : 10.1021/nl073154m

S. E. Gratton, P. A. Ropp, P. D. Pohlhaus, J. C. Luft, V. J. Madden et al., The effect of particle design on cellular internalization pathways, Proceedings of the National Academy of Sciences, vol.40, issue.4, pp.11613-11618, 2008.
DOI : 10.1002/1097-0320(20000801)40:4<280::AID-CYTO4>3.0.CO;2-7

URL : http://www.pnas.org/content/105/33/11613.full.pdf

J. A. Champion and S. Mitragotri, Role of target geometry in phagocytosis, Proceedings of the National Academy of Sciences, vol.298, issue.2, pp.4930-4934, 2006.
DOI : 10.1016/j.ijpharm.2005.03.035

URL : http://www.pnas.org/content/103/13/4930.full.pdf

N. Doshi and S. Mitragotri, Macrophages Recognize Size and Shape of Their Targets, PLoS ONE, vol.3, issue.5, p.10051, 2010.
DOI : 10.1371/journal.pone.0010051.s002

URL : https://doi.org/10.1371/journal.pone.0010051

G. Sharma, D. T. Valenta, Y. Altman, S. Harvey, H. Xie et al., Polymer particle shape independently influences binding and internalization by macrophages, Journal of Controlled Release, vol.147, issue.3, pp.408-412, 2010.
DOI : 10.1016/j.jconrel.2010.07.116

URL : http://europepmc.org/articles/pmc2975856?pdf=render

Y. Geng, P. Dalhaimer, S. Cai, R. Tsai, M. Tewari et al., Shape effects of filaments versus spherical particles in flow and drug delivery, Nature Nanotechnology, vol.47, issue.4, pp.249-255, 2007.
DOI : 10.1111/j.1348-0421.2004.tb03502.x

K. C. Black, Y. Wang, H. P. Luehmann, X. Cai, W. Xing et al., Analyses of Their Biodistribution, Tumor Uptake, and Intratumoral Distribution, ACS Nano, vol.8, issue.5, pp.4385-4394, 2014.
DOI : 10.1021/nn406258m

URL : https://doi.org/10.1021/nn406258m

J. Tan, S. Shah, A. Thomas, H. D. Ou-yang, and Y. Liu, The influence of size, shape and vessel geometry on nanoparticle distribution, Microfluid Nanofluid, pp.1-2

Y. Qiu, Y. Liu, L. Wang, L. Xu, R. Bai et al., Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods, Biomaterials, vol.31, issue.30, pp.7606-7619, 2010.
DOI : 10.1016/j.biomaterials.2010.06.051

X. Huang, X. Teng, D. Chen, F. Tang, and J. He, The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function, Biomaterials, vol.31, issue.3, pp.438-448, 2010.
DOI : 10.1016/j.biomaterials.2009.09.060

Y. W. Naguib, B. L. Rodriguez, X. Li, S. D. Hursting, and R. O. Cui, Evaluation, Molecular Pharmaceutics, vol.11, issue.4, pp.1239-1249, 2014.
DOI : 10.1021/mp4006968

H. Pawar, S. K. Surapaneni, K. Tikoo, C. Singh, R. Burman et al., evaluation, pharmacokinetic and biodistribution in rats, Drug Delivery, vol.9, issue.4, pp.1453-1468, 2016.
DOI : 10.1007/s10856-009-3887-x

L. L. Shi, J. Lu, Y. Cao, J. Y. Liu, X. X. Zhang et al., Gastrointestinal stability, physicochemical characterization and oral bioavailability of chitosan or its derivative-modified solid lipid nanoparticles loading docetaxel, Drug Dev, Ind. Pharm, pp.9045-9046, 2016.
DOI : 10.1080/03639045.2016.1220571

A. Zanotto-filho, K. Coradini, E. Braganhol, R. Schroder, C. M. De-oliveira et al., Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment, European Journal of Pharmaceutics and Biopharmaceutics, vol.83, issue.2, pp.156-167, 2013.
DOI : 10.1016/j.ejpb.2012.10.019

P. Wang, L. Zhang, H. Peng, Y. Li, J. Xiong et al., The formulation and delivery of curcumin with solid lipid nanoparticles for the treatment of on non-small cell lung cancer both in vitro and in vivo, Materials Science and Engineering: C, vol.33, issue.8, pp.33-4802, 2013.
DOI : 10.1016/j.msec.2013.07.047

Y. Wang, L. Zhou, M. Xiao, Z. L. Sun, and C. Y. Zhang, Nanomedicine-based paclitaxel induced apoptotic signaling pathways in A562 leukemia cancer cells, Colloids and Surfaces B: Biointerfaces, vol.149, pp.16-22, 2017.
DOI : 10.1016/j.colsurfb.2016.08.022

H. Mukai, K. Kato, T. Esaki, S. Ohsumi, Y. Hozomi et al., Phase I study of NK105, a nanomicellar paclitaxel formulation, administered on a weekly schedule in patients with solid tumors, Investigational New Drugs, vol.29, issue.6, pp.750-759, 2016.
DOI : 10.1111/j.1349-7006.1995.tb03316.x

Y. Zhang, S. K. Sriraman, H. A. Kenny, E. Luther, V. Torchilin et al., Reversal of Chemoresistance in Ovarian Cancer by Co-Delivery of a P-Glycoprotein Inhibitor and Paclitaxel in a Liposomal Platform, Molecular Cancer Therapeutics, vol.15, issue.10, pp.2282-2293, 2016.
DOI : 10.1158/1535-7163.MCT-15-0986

L. Jiang, B. He, D. Pan, K. Luo, Q. Yi et al., Anti-Cancer Efficacy of Paclitaxel Loaded in pH Triggered Liposomes, Journal of Biomedical Nanotechnology, vol.12, issue.1, pp.79-90, 2016.
DOI : 10.1166/jbn.2016.2123

E. Bernabeu, L. Gonzalez, M. J. Legaspi, M. A. Moretton, and D. A. Chiappetta, Journal of Nanoscience and Nanotechnology, vol.16, issue.1, pp.160-170, 2016.
DOI : 10.1166/jnn.2016.10739

H. H. Yu, W. N. Mi, B. Liu, and H. P. Zhao, In vitro and in vivo effect of paclitaxel and cepharanthine co-loaded polymeric nanoparticles in gastric cancer, J. BUON, vol.21, issue.1, pp.125-134, 2016.

K. Yu, J. Zhao, C. Yu, F. Sun, Y. Liu et al., Role of Four Different Kinds of Polyethylenimines (PEIs) in Preparation of Polymeric Lipid Nanoparticles and Their Anticancer Activity Study, Journal of Cancer, vol.7, issue.7, pp.872-882, 2016.
DOI : 10.7150/jca.13855

P. Resnier, T. Montier, V. Mathieu, J. P. Benoit, and C. Passirani, A review of the current status of siRNA nanomedicines in the treatment of cancer, Biomaterials, vol.34, issue.27, pp.6429-6443, 2013.
DOI : 10.1016/j.biomaterials.2013.04.060

P. Queirolo, V. Picasso, and F. Spagnolo, Combined BRAF and MEK inhibition for the treatment of BRAF-mutated metastatic melanoma, Cancer Treatment Reviews, vol.41, issue.6, pp.519-526, 2015.
DOI : 10.1016/j.ctrv.2015.04.010

Y. Ma, D. Liu, D. Wang, Y. Wang, Q. Fu et al., Combinational Delivery of Hydrophobic and Hydrophilic Anticancer Drugs in Single Nanoemulsions To Treat MDR in Cancer, Molecular Pharmaceutics, vol.11, issue.8, pp.11-2623, 2014.
DOI : 10.1021/mp400778r

M. R. Chowdhury, C. Schumann, D. Bhakta-guha, and G. Guha, Cancer nanotheranostics: Strategies, promises and impediments, Biomedicine & Pharmacotherapy, vol.84, pp.291-304, 2016.
DOI : 10.1016/j.biopha.2016.09.035

S. Rizzitelli, P. Giustetto, D. Faletto, D. Delli-castelli, S. Aime et al., The release of Doxorubicin from liposomes monitored by MRI and triggered by a combination of US stimuli led to a complete tumor regression in a breast cancer mouse model, Journal of Controlled Release, vol.230, pp.57-63, 2016.
DOI : 10.1016/j.jconrel.2016.03.040

P. Cirri and P. Chiarugi, Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression, Cancer and Metastasis Reviews, vol.9, issue.5, pp.195-208, 2012.
DOI : 10.1038/sj.cdd.4401979

J. A. Joyce and J. W. Pollard, Microenvironmental regulation of metastasis, Nature Reviews Cancer, vol.19, issue.4, pp.239-252, 2009.
DOI : 10.1053/sonc.2002.37263

L. Nie, O. Lyros, R. Medda, N. Jovanovic, J. L. Schmidt et al., Endothelial-mesenchymal transition in normal human esophageal endothelial cells cocultured with esophageal adenocarcinoma cells: role of IL-1?? and TGF-??2, American Journal of Physiology-Cell Physiology, vol.307, issue.9, pp.859-877, 2014.
DOI : 10.1016/j.pharmthera.2012.10.003

J. Webber, V. Yeung, and A. Clayton, Extracellular vesicles as modulators of the cancer microenvironment, Seminars in Cell & Developmental Biology, vol.40, pp.27-34, 2015.
DOI : 10.1016/j.semcdb.2015.01.013

F. J. Kohlhapp, A. K. Mitra, E. Lengyel, and M. E. Peter, MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment, Oncogene, vol.30, issue.48, pp.5857-5868, 2015.
DOI : 10.1038/onc.2011.140

T. Wang, G. Liu, and R. Wang, The Intercellular Metabolic Interplay between Tumor and Immune Cells, Frontiers in Immunology, vol.70, issue.4, 2014.
DOI : 10.4049/jimmunol.180.11.7175

I. Bohme and A. K. Bosserhoff, Acidic tumor microenvironment in human melanoma, Pigment Cell & Melanoma Research, vol.51, issue.5, pp.508-523, 2016.
DOI : 10.2967/jnumed.109.068981

J. Folkman, Tumor angiogenesis: therapeutic implications, N. Engl. J. Med, vol.285, issue.21, pp.1182-1186, 1971.

G. C. Jayson, R. Kerbel, L. M. Ellis, and A. L. Harris, Antiangiogenic therapy in oncology: current status and future directions, The Lancet, vol.388, issue.10043, pp.518-529, 2016.
DOI : 10.1016/S0140-6736(15)01088-0

I. Pastushenko, P. B. Vermeulen, G. G. Van-den-eynden, A. Rutten, F. J. Carapeto et al., Mechanisms of tumour vascularization in cutaneous malignant melanoma: clinical implications, British Journal of Dermatology, vol.25, issue.Suppl. 2, pp.220-233, 2014.
DOI : 10.1038/modpathol.2011.182

A. Giatromanolaki, E. Sivridis, C. Kouskoukis, K. C. Gatter, A. L. Harris et al., Hypoxia-inducible factors 1?? and 2?? are related to vascular endothelial growth factor expression and a poorer prognosis in nodular malignant melanomas of the skin, Melanoma Research, vol.13, issue.5, pp.493-501, 2003.
DOI : 10.1097/00008390-200310000-00008

O. Straume and L. A. Akslen, Expresson of Vascular Endothelial Growth Factor, Its Receptors (FLT-1, KDR) and TSP-1 Related to Microvessel Density and Patient Outcome in Vertical Growth Phase Melanomas, The American Journal of Pathology, vol.159, issue.1, pp.223-235, 2001.
DOI : 10.1016/S0002-9440(10)61688-4

URL : http://europepmc.org/articles/pmc1850434?pdf=render

A. H. Vaisanen, M. Kallioinen, and T. Turpeenniemi-hujanen, Comparison of the prognostic value of matrix metalloproteinases 2 and 9 in cutaneous melanoma, Human Pathology, vol.39, issue.3, pp.377-385, 2008.
DOI : 10.1016/j.humpath.2007.06.021

R. K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy: A new paradigm for combination therapy, Nature Medicine, vol.61, issue.Suppl 3, pp.987-989, 2001.
DOI : 10.1016/S0360-3016(96)00628-1

I. Helfrich, I. Scheffrahn, S. Bartling, J. Weis, V. Von-felbert et al., Resistance to antiangiogenic therapy is directed by vascular phenotype, vessel stabilization, and maturation in malignant melanoma, The Journal of Experimental Medicine, vol.60, issue.3, pp.491-503, 2010.
DOI : 10.1161/01.RES.81.4.567

URL : http://jem.rupress.org/content/jem/207/3/491.full.pdf

T. Akino, K. Hida, Y. Hida, K. Tsuchiya, D. Freedman et al., Cytogenetic Abnormalities of Tumor-Associated Endothelial Cells in Human Malignant Tumors, The American Journal of Pathology, vol.175, issue.6, pp.2657-2667, 2009.
DOI : 10.2353/ajpath.2009.090202

K. Matsuda, N. Ohga, Y. Hida, C. Muraki, K. Tsuchiya et al., Isolated tumor endothelial cells maintain specific character during long-term culture, Biochemical and Biophysical Research Communications, vol.394, issue.4, pp.947-954, 2010.
DOI : 10.1016/j.bbrc.2010.03.089

K. Akiyama, N. Ohga, Y. Hida, T. Kawamoto, Y. Sadamoto et al., Tumor Endothelial Cells Acquire Drug Resistance by MDR1 Up-Regulation via VEGF Signaling in Tumor Microenvironment, The American Journal of Pathology, vol.180, issue.3, pp.1283-1293, 2012.
DOI : 10.1016/j.ajpath.2011.11.029

S. Morikawa, P. Baluk, T. Kaidoh, A. Haskell, R. K. Jain et al., Abnormalities in Pericytes on Blood Vessels and Endothelial Sprouts in Tumors, The American Journal of Pathology, vol.160, issue.3, pp.985-1000, 2002.
DOI : 10.1016/S0002-9440(10)64920-6

URL : http://europepmc.org/articles/pmc1867175?pdf=render

N. Ohga, S. Ishikawa, N. Maishi, K. Akiyama, Y. Hida et al., Heterogeneity of Tumor Endothelial Cells, The American Journal of Pathology, vol.180, issue.3, pp.1294-1307, 2012.
DOI : 10.1016/j.ajpath.2011.11.035

H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, Journal of Controlled Release, vol.65, issue.1-2, pp.271-284, 2000.
DOI : 10.1016/S0168-3659(99)00248-5

J. Fang, H. Nakamura, and H. Maeda, The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect, Advanced Drug Delivery Reviews, vol.63, issue.3, pp.136-151, 2011.
DOI : 10.1016/j.addr.2010.04.009

Y. Matsumura and H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res, vol.4612, issue.1, pp.6387-6392, 1986.

O. Tredan, C. M. Galmarini, K. Patel, and I. F. Tannock, Drug Resistance and the Solid Tumor Microenvironment, JNCI Journal of the National Cancer Institute, vol.314, issue.5803, pp.1441-1454, 2007.
DOI : 10.1126/science.1130651

URL : https://academic.oup.com/jnci/article-pdf/99/19/1441/7775131/djm135.pdf

C. H. Heldin, K. Rubin, K. Pietras, and A. Ostman, High interstitial fluid pressure ??? an obstacle in cancer therapy, Nature Reviews Cancer, vol.74, issue.10, pp.806-813, 2004.
DOI : 10.1038/74725

T. K. Eigentler, U. M. Caroli, P. Radny, and C. Garbe, Palliative therapy of disseminated malignant melanoma: a systematic review of 41 randomised clinical trials, The Lancet Oncology, vol.4, issue.12, pp.748-759, 2003.
DOI : 10.1016/S1470-2045(03)01280-4

G. Kustermans, J. Piette, and S. Legrand-poels, Actin-targeting natural compounds as tools to study the role of actin cytoskeleton in signal transduction, Biochemical Pharmacology, vol.76, issue.11, pp.1310-1322, 2008.
DOI : 10.1016/j.bcp.2008.05.028

F. Y. Huang, W. L. Mei, Y. N. Li, G. H. Tan, H. F. Dai et al., The antitumour activities induced by pegylated liposomal cytochalasin D in murine models, European Journal of Cancer, vol.48, issue.14, pp.2260-2269, 2012.
DOI : 10.1016/j.ejca.2011.12.018

Z. Liu, D. Liu, L. Wang, J. Zhang, and N. Zhang, Docetaxel-Loaded Pluronic P123 Polymeric Micelles: in Vitro and in Vivo Evaluation, International Journal of Molecular Sciences, vol.10, issue.3, pp.1684-1696, 2011.
DOI : 10.1021/bm801225m

URL : http://www.mdpi.com/1422-0067/12/3/1684/pdf

G. Parsonage, A. D. Filer, O. Haworth, G. B. Nash, G. E. Rainger et al., A stromal address code defined by fibroblasts, Trends in Immunology, vol.26, issue.3, pp.150-156, 2005.
DOI : 10.1016/j.it.2004.11.014

URL : http://europepmc.org/articles/pmc3121558?pdf=render

R. Kalluri and M. Zeisberg, Fibroblasts in cancer, Nature Reviews Cancer, vol.59, issue.Suppl. 3, pp.392-401, 2006.
DOI : 10.1046/j.1523-1755.2001.059002543.x

A. Orimo and R. A. Weinberg, Heterogeneity of stromal fibroblasts in tumor, Cancer Biology & Therapy, vol.6, issue.4, pp.618-619, 2007.
DOI : 10.4161/cbt.6.4.4255

URL : http://www.tandfonline.com/doi/pdf/10.4161/cbt.6.4.4255?needAccess=true

G. Ishii, A. Ochiai, and S. Neri, Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment, Advanced Drug Delivery Reviews, vol.99, pp.186-196, 2016.
DOI : 10.1016/j.addr.2015.07.007

M. Martin, H. Wei, and T. Lu, Targeting microenvironment in cancer therapeutics, Oncotarget, vol.7, issue.32, pp.52575-52583, 2016.
DOI : 10.18632/oncotarget.9824

URL : http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=9824&path%5B%5D=30832

S. J. Engle, J. B. Hoying, G. P. Boivin, I. Ormsby, P. S. Gartside et al., Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis, Cancer Res, vol.59, issue.14, pp.3379-3386, 1999.

R. J. Mcanulty, Fibroblasts and myofibroblasts: Their source, function and role in disease, The International Journal of Biochemistry & Cell Biology, vol.39, issue.4, pp.666-671, 2007.
DOI : 10.1016/j.biocel.2006.11.005

D. T. Fearon, The Carcinoma-Associated Fibroblast Expressing Fibroblast Activation Protein and Escape from Immune Surveillance, Cancer Immunology Research, vol.2, issue.3, pp.187-193, 2014.
DOI : 10.1158/2326-6066.CIR-14-0002

URL : http://cancerimmunolres.aacrjournals.org/content/canimm/2/3/187.full.pdf

M. Kraman, P. J. Bambrough, J. N. Arnold, E. W. Roberts, L. Magiera et al., Suppression of Antitumor Immunity by Stromal Cells Expressing Fibroblast Activation Protein-??, Science, vol.224, issue.26, pp.827-830, 2010.
DOI : 10.1111/j.1600-065X.2008.00649.x

H. Shao, R. Kong, M. L. Ferrari, F. Radtke, A. J. Capobianco et al., Notch1 Pathway Activity Determines the Regulatory Role of Cancer-Associated Fibroblasts in Melanoma Growth and Invasion, PLOS ONE, vol.3, issue.11, p.142815, 2015.
DOI : 10.1371/journal.pone.0142815.s002

V. Thakur and B. Bedogni, The membrane tethered matrix metalloproteinase MT1-MMP at the forefront of melanoma cell invasion and metastasis, Pharmacological Research, vol.111, pp.17-22, 2016.
DOI : 10.1016/j.phrs.2016.05.019

L. Zhou, K. Yang, T. Andl, R. R. Wickett, and Y. Zhang, Perspective of Targeting Cancer-Associated Fibroblasts in Melanoma, Journal of Cancer, vol.6, issue.8, pp.717-726, 2015.
DOI : 10.7150/jca.10865

E. Helal-neto, R. M. Brandao-costa, R. Saldanha-gama, C. Ribeiro-pereira, V. Midlej et al., Barja-Fidalgo, Priming endothelial cells with a melanoma-derived extracellular matrix triggers the activation of v3/VEGFR2 axis, J. Cell. Physiol, issue.11, pp.231-2464, 2016.

S. Sakamoto and N. Kyprianou, Targeting anoikis resistance in prostate cancer metastasis, Molecular Aspects of Medicine, vol.31, issue.2, pp.205-214, 2010.
DOI : 10.1016/j.mam.2010.02.001

URL : http://europepmc.org/articles/pmc2988681?pdf=render

H. Miyamoto, T. Murakami, K. Tsuchida, H. Sugino, H. Miyake et al., Tumor-Stroma Interaction of Human Pancreatic Cancer: Acquired Resistance to Anticancer Drugs and Proliferation Regulation Is Dependent on Extracellular Matrix Proteins, Pancreas, vol.28, issue.1, pp.38-44, 2004.
DOI : 10.1097/00006676-200401000-00006

Y. Hu, C. Yan, L. Mu, K. Huang, X. Li et al., Fibroblast-Derived Exosomes Contribute to Chemoresistance through Priming Cancer Stem Cells in Colorectal Cancer, PLOS ONE, vol.18, issue.6, p.125625, 2015.
DOI : 10.1371/journal.pone.0125625.g006

URL : https://doi.org/10.1371/journal.pone.0125625

M. Castells, B. Thibault, J. P. Delord, and B. Couderc, Implication of Tumor Microenvironment in Chemoresistance: Tumor-Associated Stromal Cells Protect Tumor Cells from Cell Death, International Journal of Molecular Sciences, vol.9, issue.3, pp.9545-9571, 2012.
DOI : 10.1593/neo.11324

URL : http://www.mdpi.com/1422-0067/13/8/9545/pdf

E. H. Flach, V. W. Rebecca, M. Herlyn, K. S. Smalley, and A. R. Anderson, Fibroblasts Contribute to Melanoma Tumor Growth and Drug Resistance, Molecular Pharmaceutics, vol.8, issue.6, pp.2039-2049, 2011.
DOI : 10.1021/mp200421k

URL : http://europepmc.org/articles/pmc3235959?pdf=render

M. Berube, M. Talbot, C. Collin, C. Paquet-bouchard, L. Germain et al., Role of the extracellular matrix proteins in the resistance of SP6.5 uveal melanoma cells toward cisplatin, Int. J. Oncol, vol.26, issue.2, pp.405-413, 2005.

K. Boisvert-adamo and A. E. Aplin, B-RAF and PI-3 kinase signaling protect melanoma cells from anoikis, Oncogene, vol.25, issue.35, pp.4848-4856, 2006.
DOI : 10.1038/sj.onc.1209493

URL : http://www.nature.com/onc/journal/v25/n35/pdf/1209493a.pdf

M. Fukunaga-kalabis, G. Martinez, T. K. Nguyen, D. Kim, A. Santiago-walker et al., Tenascin-C promotes melanoma progression by maintaining the ABCB5-positive side population, Oncogene, vol.153, issue.46, pp.6115-6124, 2010.
DOI : 10.1172/JCI28984

URL : http://www.nature.com/onc/journal/v29/n46/pdf/onc2010350a.pdf

U. B. Hofmann, J. R. Westphal, E. T. Waas, A. J. Zendman, I. M. Cornelissen et al., Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression, British Journal of Cancer, vol.81, issue.5, pp.774-782, 1999.
DOI : 10.1038/sj.bjc.6690763

URL : http://www.nature.com/bjc/journal/v81/n5/pdf/6690763a.pdf

U. B. Hofmann, A. A. Eggert, K. Blass, E. B. Brocker, and J. C. Becker, Expression of matrix metalloproteinases in the microenvironment of spontaneous and experimental melanoma metastases reflects the requirements for tumor formation, Cancer Res, vol.63, issue.23, pp.8221-8225, 2003.

R. A. Gatenby and R. J. Gillies, Why do cancers have high aerobic glycolysis?, Nature Reviews Cancer, vol.62, issue.11, pp.891-899, 2004.
DOI : 10.1038/sj.bjc.6690586

A. Riemann, A. Ihling, J. Thomas, B. Schneider, O. Thews et al., Acidic environment activates inflammatory programs in fibroblasts via a cAMP???MAPK pathway, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1853, issue.2, pp.299-307, 2015.
DOI : 10.1016/j.bbamcr.2014.11.022

URL : https://doi.org/10.1016/j.bbamcr.2014.11.022

M. Yabu, H. Shime, H. Hara, T. Saito, M. Matsumoto et al., IL-23-dependent and -independent enhancement pathways of IL-17A production by lactic acid, International Immunology, vol.9, issue.343 Pt, pp.29-41, 2011.
DOI : 10.1016/j.ccr.2006.04.023

URL : https://academic.oup.com/intimm/article-pdf/23/1/29/17414337/dxq455.pdf

A. Calcinotto, P. Filipazzi, M. Grioni, M. Iero, A. De-milito et al., Modulation of Microenvironment Acidity Reverses Anergy in Human and Murine Tumor-Infiltrating T Lymphocytes, Cancer Research, vol.72, issue.11, pp.72-2746, 2012.
DOI : 10.1158/0008-5472.CAN-11-1272

URL : http://cancerres.aacrjournals.org/content/canres/72/11/2746.full.pdf

K. Goetze, S. Walenta, M. Ksiazkiewicz, L. A. Kunz-schughart, and W. Mueller-klieser, Lactate enhances motility of tumor cells and inhibits monocyte migration and cytokine release, International Journal of Oncology, vol.39, issue.2, pp.453-463, 2011.
DOI : 10.3892/ijo.2011.1055

URL : http://www.spandidos-publications.com/ijo/39/2/453/download

E. K. Rofstad, B. Mathiesen, K. Kindem, and K. Galappathi, Acidic Extracellular pH Promotes Experimental Metastasis of Human Melanoma Cells in Athymic Nude Mice, Cancer Research, vol.66, issue.13, pp.6699-6707, 2006.
DOI : 10.1158/0008-5472.CAN-06-0983

URL : http://cancerres.aacrjournals.org/content/canres/66/13/6699.full.pdf

T. K. Hunt, R. S. Aslam, S. Beckert, S. Wagner, Q. P. Ghani et al., Redox Mechanisms, Antioxidants & Redox Signaling, vol.9, issue.8, pp.1115-1124, 2007.
DOI : 10.1089/ars.2007.1674

G. Helmlinger, A. Sckell, M. Dellian, N. S. Forbes, and R. K. Jain, Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism, Clin. Cancer Res, vol.8, issue.4, pp.1284-1291, 2002.

Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, A. Suzuki et al., Acidic extracellular microenvironment and cancer, Cancer Cell International, vol.13, issue.1, 2013.
DOI : 10.1007/s10495-006-0010-3

URL : https://cancerci.biomedcentral.com/track/pdf/10.1186/1475-2867-13-89?site=cancerci.biomedcentral.com

V. Estrella, T. Chen, M. Lloyd, J. Wojtkowiak, H. H. Cornnell et al., Acidity Generated by the Tumor Microenvironment Drives Local Invasion, Cancer Research, vol.73, issue.5, pp.1524-1535, 2013.
DOI : 10.1158/0008-5472.CAN-12-2796

URL : http://cancerres.aacrjournals.org/content/canres/73/5/1524.full.pdf

Y. Kato, S. Ozawa, M. Tsukuda, E. Kubota, K. Miyazaki et al., Acidic extracellular pH increases calcium influx-triggered phospholipase???D activity along with acidic sphingomyelinase activation to induce matrix metalloproteinase-9 expression in mouse metastatic melanoma, FEBS Journal, vol.21, issue.12, pp.3171-3183, 2007.
DOI : 10.1007/s10585-005-0041-0

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1742-4658.2007.05848.x/pdf

R. A. Gatenby, E. T. Gawlinski, A. F. Gmitro, B. Kaylor, and R. J. Gillies, Acid-Mediated Tumor Invasion: a Multidisciplinary Study, Cancer Research, vol.66, issue.10, pp.5216-5223, 2006.
DOI : 10.1158/0008-5472.CAN-05-4193

URL : http://cancerres.aacrjournals.org/content/canres/66/10/5216.full.pdf

J. W. Wojtkowiak, J. M. Rothberg, V. Kumar, K. J. Schramm, E. Haller et al., Chronic Autophagy Is a Cellular Adaptation to Tumor Acidic pH Microenvironments, Cancer Research, vol.72, issue.16, pp.72-3938, 2012.
DOI : 10.1158/0008-5472.CAN-11-3881

URL : http://cancerres.aacrjournals.org/content/canres/72/16/3938.full.pdf

S. Kuphal, A. Winklmeier, C. Warnecke, and A. K. Bosserhoff, Constitutive HIF-1 activity in malignant melanoma, Constitutive HIF-1 activity in malignant melanoma, pp.1159-1169, 2010.
DOI : 10.1016/j.ejca.2010.01.031

S. C. Hanna, B. Krishnan, S. T. Bailey, S. J. Moschos, P. F. Kuan et al., HIF1?? and HIF2?? independently activate SRC to promote melanoma metastases, Journal of Clinical Investigation, vol.123, issue.5, pp.2078-2093, 2013.
DOI : 10.1172/JCI66715DS1

URL : http://www.jci.org/articles/view/66715/files/pdf

T. Nishisho, K. Hata, M. Nakanishi, Y. Morita, G. H. Sun-wada et al., The a3 Isoform Vacuolar Type H+-ATPase Promotes Distant Metastasis in the Mouse B16 Melanoma Cells, Molecular Cancer Research, vol.9, issue.7, pp.845-855, 2011.
DOI : 10.1158/1541-7786.MCR-10-0449

URL : http://mcr.aacrjournals.org/content/molcanres/9/7/845.full.pdf

A. De-milito, R. Canese, M. L. Marino, M. Borghi, M. Iero et al., pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity, International Journal of Cancer, vol.14, issue.1, pp.207-219, 2010.
DOI : 10.1016/j.drudis.2009.03.014

R. K. Paradise, D. A. Lauffenburger, K. J. Van, and . Vliet, Acidic Extracellular pH Promotes Activation of Integrin ??v??3, PLoS ONE, vol.109, issue.1, p.15746, 2011.
DOI : 10.1371/journal.pone.0015746.s005

URL : https://doi.org/10.1371/journal.pone.0015746

H. Krahling, S. Mally, J. A. Eble, J. Noel, A. Schwab et al., The glycocalyx maintains a cell surface pH nanoenvironment crucial for integrin-mediated migration of human melanoma cells, Pfl??gers Archiv - European Journal of Physiology, vol.99, issue.Pt 20, pp.1069-1083, 2009.
DOI : 10.1161/01.CIR.101.13.1500

F. T. Ludwig, A. Schwab, and C. Stock, -exchanger (NHE1) generates pH nanodomains at focal adhesions, Journal of Cellular Physiology, vol.138, issue.6, pp.1351-1358, 2013.
DOI : 10.1007/BF00232642

C. Scheel and R. A. Weinberg, Cancer stem cells and epithelial???mesenchymal transition: Concepts and molecular links, Seminars in Cancer Biology, vol.22, issue.5-6, pp.5-6
DOI : 10.1016/j.semcancer.2012.04.001

S. Peppicelli, F. Bianchini, E. Torre, and L. Calorini, Contribution of acidic melanoma cells undergoing epithelial-to-mesenchymal transition to aggressiveness of non-acidic melanoma cells, Clinical & Experimental Metastasis, vol.69, issue.8, pp.423-433, 2014.
DOI : 10.1158/0008-5472.CAN-07-5575

J. W. Wojtkowiak, D. Verduzco, K. J. Schramm, and R. J. Gillies, Drug Resistance and Cellular Adaptation to Tumor Acidic pH Microenvironment, Molecular Pharmaceutics, vol.8, issue.6, pp.2032-2038, 2011.
DOI : 10.1021/mp200292c

URL : http://europepmc.org/articles/pmc3230683?pdf=render

S. Taylor, E. P. Spugnini, Y. G. Assaraf, T. Azzarito, C. Rauch et al., Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach, Drug Resistance Updates, vol.23, pp.69-78, 2015.
DOI : 10.1016/j.drup.2015.08.004

C. Federici, F. Petrucci, S. Caimi, A. Cesolini, M. Logozzi et al., Exosome Release and Low pH Belong to a Framework of Resistance of Human Melanoma Cells to Cisplatin, PLoS ONE, vol.18, issue.2, p.88193, 2014.
DOI : 10.1371/journal.pone.0088193.s006

J. L. Chen, J. E. Lucas, T. Schroeder, S. Mori, J. Wu et al., The Genomic Analysis of Lactic Acidosis and Acidosis Response in Human Cancers, PLoS Genetics, vol.95, issue.12, p.1000293, 2008.
DOI : 10.1371/journal.pgen.1000293.s020

O. Thews, B. Gassner, D. K. Kelleher, G. Schwerdt, and M. Gekle, Impact of Extracellular Acidity on the Activity of P-glycoprotein and the Cytotoxicity of Chemotherapeutic Drugs, Neoplasia, vol.8, issue.2, pp.143-152, 2006.
DOI : 10.1593/neo.05697

K. Sampathkumar, S. Arulkumar, and M. Ramalingam, Advances in Stimuli Responsive Nanobiomaterials for Cancer Therapy, Journal of Biomedical Nanotechnology, vol.10, issue.3, pp.367-382, 2014.
DOI : 10.1166/jbn.2014.1778

M. Zorko and U. , Cell-penetrating peptides: mechanism and kinetics of cargo delivery, Advanced Drug Delivery Reviews, vol.57, issue.4, pp.529-545, 2005.
DOI : 10.1016/j.addr.2004.10.010

W. Zhang, J. Song, B. Zhang, L. Liu, K. Wang et al., Design of Acid-Activated Cell Penetrating Peptide for Delivery of Active Molecules into Cancer Cells, Bioconjugate Chemistry, vol.22, issue.7, pp.1410-1415, 2011.
DOI : 10.1021/bc200138d

URL : http://hdl.handle.net/10397/28774

W. H. Fridman, F. Pages, C. Sautes-fridman, and J. Galon, The immune contexture in human tumours: impact on clinical outcome, Nature Reviews Cancer, vol.29, issue.4, pp.298-306, 2012.
DOI : 10.1200/JCO.2010.30.6308

B. Mlecnik, M. Tosolini, P. Charoentong, A. Kirilovsky, G. Bindea et al., Biomolecular Network Reconstruction Identifies T-Cell Homing Factors Associated With Survival in Colorectal Cancer, Gastroenterology, vol.138, issue.4, pp.1429-1440, 2010.
DOI : 10.1053/j.gastro.2009.10.057

R. J. Buckanovich, A. Facciabene, S. Kim, F. Benencia, D. Sasaroli et al., Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy, Nature Medicine, vol.32, issue.1, pp.28-36, 2008.
DOI : 10.1182/blood-2004-05-1906

C. Fortes, S. Mastroeni, T. J. Mannooranparampil, F. Passarelli, A. Zappala et al., Tumor-infiltrating lymphocytes predict cutaneous melanoma survival, Melanoma Research, vol.25, issue.4, pp.306-311, 2015.
DOI : 10.1097/CMR.0000000000000164

URL : https://translational-medicine.biomedcentral.com/track/pdf/10.1186/1479-5876-13-S1-O9

F. Piras, R. Colombari, L. Minerba, D. Murtas, C. Floris et al., The predictive value of CD8, CD4, CD68, and human leukocyte antigen-D-related cells in the prognosis of cutaneous malignant melanoma with vertical growth phase, Cancer, vol.48, issue.6, pp.1246-1254, 2005.
DOI : 10.1016/S0002-9440(10)61689-6

A. Hakansson, B. Gustafsson, L. Krysander, B. Hjelmqvist, B. Rettrup et al., Biochemotherapy of metastatic malignant melanoma. Predictive value of tumour-infiltrating lymphocytes, British Journal of Cancer, vol.85, issue.12, pp.1871-1877, 2001.
DOI : 10.1054/bjoc.2001.2169

C. Miracco, V. Mourmouras, M. Biagioli, P. Rubegni, S. Mannucci et al., Utility of tumour-infiltrating CD25 + FOXP3 + regulatory T cell evaluation in predicting local recurrence in vertical growth phase cutaneous melanoma, Oncol. Rep, vol.18, issue.5, pp.1115-1122, 2007.

D. Mougiakakos, C. C. Johansson, E. Trocme, C. All-ericsson, M. A. Economou et al., Intratumoral forkhead box P3-positive regulatory T cells predict poor survival in cyclooxygenase-2-positive uveal melanoma, Cancer, vol.9, issue.9, pp.2224-2233, 2010.
DOI : 10.3129/can j ophthalmol.06-109

URL : http://onlinelibrary.wiley.com/doi/10.1002/cncr.24999/pdf

H. Sumimoto, F. Imabayashi, T. Iwata, and Y. Kawakami, The BRAF???MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells, The Journal of Experimental Medicine, vol.63, issue.7, pp.1651-1656, 2006.
DOI : 10.1002/ijc.21286

URL : http://jem.rupress.org/content/jem/203/7/1651.full.pdf

N. Larmonier, M. Marron, Y. Zeng, J. Cantrell, A. Romanoski et al., Tumor-derived CD4+CD25+ regulatory T cell suppression of dendritic cell function involves TGF-?? and IL-10, Cancer Immunology, Immunotherapy, vol.101, issue.1, pp.48-59, 2007.
DOI : 10.4049/jimmunol.174.11.7433

J. W. Pollard, Tumour-educated macrophages promote tumour progression and metastasis, Nature Reviews Cancer, vol.410, issue.Suppl., pp.71-78, 2004.
DOI : 10.1038/35065016

G. Solinas, G. Germano, A. Mantovani, and P. Allavena, Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation, Journal of Leukocyte Biology, vol.205, issue.5, pp.1065-1073, 2009.
DOI : 10.1084/jem.20080132

L. Jimenez-garcia, S. Herranz, M. A. Higueras, A. Luque, and S. Hortelano, Tumor suppressor ARF regulates tissue microenvironment and tumor growth through modulation of macrophage polarization, Oncotarget, vol.7, issue.41, pp.66835-66850, 2016.
DOI : 10.18632/oncotarget.11652

A. Tarhini, E. Lo, and D. R. Minor, Releasing the Brake on the Immune System: Ipilimumab in Melanoma and Other Tumors, Cancer Biotherapy & Radiopharmaceuticals, vol.25, issue.6, pp.601-613, 2010.
DOI : 10.1089/cbr.2010.0865

URL : http://europepmc.org/articles/pmc3011989?pdf=render

A. R. Jazirehi, A. Lim, and T. Dinh, PD-1 inhibition and treatment of advanced melanoma-role of pembrolizumab, Am. J. Cancer Res, vol.6, issue.10, pp.2117-2128, 2016.

D. T. Frederick, A. Piris, A. P. Cogdill, Z. A. Cooper, C. Lezcano et al.,

W. W. Hodi, G. Overwijk, G. F. Lizee, P. Murphy, K. T. Hwu et al., BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma, Clin. Cancer Res, vol.19, issue.5, pp.1225-1231, 2013.

Z. A. Cooper, D. T. Frederick, V. R. Juneja, R. J. Sullivan, D. P. Lawrence et al., BRAF inhibition is associated with increased clonality in tumor-infiltrating lymphocytes, OncoImmunology, vol.14, issue.10, p.26615, 2013.
DOI : 10.1016/j.ejca.2008.10.026

URL : http://europepmc.org/articles/pmc3827093?pdf=render

G. D. Vittoria-scarpati, C. Fusciello, F. Perri, F. Sabbatino, S. Ferrone et al., Ipilimumab in the treatment of metastatic melanoma: management of adverse events, OncoTargets and Therapy, vol.7, pp.203-209, 2014.
DOI : 10.2147/OTT.S57335

X. Zhuang, T. Wu, Y. Zhao, X. Hu, Y. Bao et al., Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K b and H-2D b -restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma, Journal of Controlled Release, vol.228, pp.26-37, 2016.
DOI : 10.1016/j.jconrel.2016.02.035

Y. Guo, D. Wang, Q. Song, T. Wu, X. Zhuang et al., Erythrocyte Membrane-Enveloped Polymeric Nanoparticles as Nanovaccine for Induction of Antitumor Immunity against Melanoma, ACS Nano, vol.9, issue.7, pp.6918-6933, 2015.
DOI : 10.1021/acsnano.5b01042

S. Y. Li, Y. Liu, C. F. Xu, S. Shen, R. Sun et al., Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation, Journal of Controlled Release, vol.231, pp.17-28, 2016.
DOI : 10.1016/j.jconrel.2016.01.044

B. Choi, H. Moon, S. J. Hong, C. Shin, Y. Do et al., Effective Delivery of Antigen???Encapsulin Nanoparticle Fusions to Dendritic Cells Leads to Antigen-Specific Cytotoxic T Cell Activation and Tumor Rejection, ACS Nano, vol.10, issue.8, pp.7339-7350, 2016.
DOI : 10.1021/acsnano.5b08084

S. M. Goldinger, R. Dummer, P. Baumgaertner, D. Mihic-probst, K. Schwarz et al., T-cell responses in melanoma patients, European Journal of Immunology, vol.16, issue.11, pp.42-3049, 2012.
DOI : 10.1158/1078-0432.CCR-09-3136

A. Amin, D. H. Lawson, A. K. Salama, H. B. Koon, T. G. Jr et al., Phase II study of vemurafenib followed by ipilimumab in patients with previously untreated BRAF-mutated metastatic melanoma, Journal for ImmunoTherapy of Cancer, vol.372, issue.1, p.44, 2016.
DOI : 10.1016/S1470-2045(16)30126-7

F. S. Hodi, J. Chesney, A. C. Pavlick, C. Robert, K. F. Grossmann et al., Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial, The Lancet Oncology, vol.17, issue.11, pp.1558-1568, 2016.
DOI : 10.1016/S1470-2045(16)30366-7

M. Maio, J. J. Grob, S. Aamdal, I. Bondarenko, C. Robert et al., Five-Year Survival Rates for Treatment-Naive Patients With Advanced Melanoma Who Received Ipilimumab Plus Dacarbazine in a Phase III Trial, Journal of Clinical Oncology, vol.33, issue.10, pp.33-1191, 2015.
DOI : 10.1200/JCO.2014.56.6018

URL : http://europepmc.org/articles/pmc5795709

H. M. Warenius, G. Galfre, N. M. Bleehen, and C. Milstein, Attempted targeting of a monoclonal antibody in a human tumour xenograft system, European Journal of Cancer and Clinical Oncology, vol.17, issue.9, pp.1009-1015, 1981.
DOI : 10.1016/S0277-5379(81)80006-5

Z. G. Mao, C. C. Jiang, F. Yang, R. F. Thorne, P. Hersey et al., TRAIL-induced apoptosis of human melanoma cells involves activation of caspase-4, Apoptosis, vol.67, issue.10, pp.1211-1222, 2010.
DOI : 10.1016/S0002-9440(10)62045-7

J. Eberle, L. F. Fecker, A. M. Hossini, B. M. Kurbanov, and H. Fechner, Apoptosis pathways and oncolytic adenoviral vectors: promising targets and tools to overcome therapy resistance of malignant melanoma, Experimental Dermatology, vol.127, issue.1, pp.1-11, 2008.
DOI : 10.4161/cc.5.19.3263

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0625.2007.00655.x/pdf

P. Schmidt, C. Kopecky, A. Hombach, P. Zigrino, C. Mauch et al., Eradication of melanomas by targeted elimination of a minor subset of tumor cells, Proceedings of the National Academy of Sciences, vol.57, issue.3, pp.2474-2479, 2011.
DOI : 10.1007/s00262-007-0383-3

D. Fang, T. K. Nguyen, K. Leishear, R. Finko, A. N. Kulp et al., A Tumorigenic Subpopulation with Stem Cell Properties in Melanomas, Cancer Research, vol.65, issue.20, pp.65-9328, 2005.
DOI : 10.1158/0008-5472.CAN-05-1343

URL : http://cancerres.aacrjournals.org/content/canres/65/20/9328.full.pdf

H. Song, X. Su, K. Yang, F. Niu, J. Li et al., CD20 Antibody-Conjugated Immunoliposomes for Targeted Chemotherapy of Melanoma Cancer Initiating Cells, Journal of Biomedical Nanotechnology, vol.11, issue.11, pp.11-1927, 2015.
DOI : 10.1166/jbn.2015.2129

P. Hersey, O. Jamal, C. Henderson, I. Zardawi, and G. , Expression of the gangliosides GM3, GD3 and GD2 in tissue sections of normal skin, naevi, primary and metastatic melanoma, International Journal of Cancer, vol.14, issue.3, pp.336-343, 1988.
DOI : 10.1093/ajcp/75.5.734

F. Pastorino, C. Brignole, D. Marimpietri, G. Pagnan, A. Morando et al., Targeted liposomal c-myc antisense oligodeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models, Clin. Cancer Res, vol.9, issue.12, pp.4595-4605, 2003.

E. Koren and V. P. Torchilin, Cell-penetrating peptides: breaking through to the other side, Trends in Molecular Medicine, vol.18, issue.7, pp.385-393, 2012.
DOI : 10.1016/j.molmed.2012.04.012

R. H. Kramer, M. Vu, Y. F. Cheng, and D. M. Ramos, Integrin expression in malignant melanoma, Cancer and Metastasis Review, vol.85, issue.1, pp.49-59, 1991.
DOI : 10.1007/BF00046843

E. Kluza, I. Jacobs, S. J. Hectors, K. H. Mayo, A. W. Griffioen et al., Dual-targeting of ??v??3 and galectin-1 improves the specificity of paramagnetic/fluorescent liposomes to tumor endothelium in vivo, Journal of Controlled Release, vol.158, issue.2, pp.207-214, 2012.
DOI : 10.1016/j.jconrel.2011.10.032

J. B. Tatro, Z. Wen, M. L. Entwistle, M. B. Atkins, T. J. Smith et al., Interaction of an alpha-melanocyte-stimulating hormone-diphtheria toxin fusion protein with melanotropin receptors in human melanoma metastases, Cancer Res, vol.52, issue.9, pp.2545-2548, 1992.

Y. Miao, D. Whitener, W. Feng, N. K. Owen, J. Chen et al., Evaluation of the Human Melanoma Targeting Properties of Radiolabeled ??-Melanocyte Stimulating Hormone Peptide Analogues, Bioconjugate Chemistry, vol.14, issue.6, pp.1177-1184, 2003.
DOI : 10.1021/bc034069i

J. Xu, J. Yang, and Y. Miao, Dual receptor-targeting 99mTc-labeled Arg-Gly-Asp-conjugated Alpha-Melanocyte stimulating hormone hybrid peptides for human melanoma imaging, Nuclear Medicine and Biology, vol.42, issue.4, pp.369-374, 2015.
DOI : 10.1016/j.nucmedbio.2014.11.002

URL : http://europepmc.org/articles/pmc4361317?pdf=render

C. O. Silva, J. Molpeceres, B. Batanero, A. S. Fernandes, N. Saraiva et al., Functionalized diterpene parvifloron D-loaded hybrid nanoparticles for targeted delivery in melanoma therapy, Therapeutic Delivery, vol.6, issue.0, pp.521-544, 2016.
DOI : 10.1016/j.ejps.2016.01.012

L. Liu, J. Xu, J. Yang, C. Feng, and Y. Miao, Imaging human melanoma using a novel Tc-99m-labeled lactam bridge-cyclized alpha-MSH peptide, Bioorganic & Medicinal Chemistry Letters, vol.26, issue.19
DOI : 10.1016/j.bmcl.2016.08.042

URL : http://europepmc.org/articles/pmc5018458?pdf=render

, Med. Chem. Lett, vol.26, pp.4724-4728, 2016.

L. Vannucci, E. Falvo, C. M. Failla, M. Carbo, M. Fornara et al., <I>In Vivo</I> Targeting of Cutaneous Melanoma Using an Melanoma Stimulating Hormone-Engineered Human Protein Cage with Fluorophore and Magnetic Resonance Imaging Tracers, Journal of Biomedical Nanotechnology, vol.11, issue.1, pp.81-92, 2015.
DOI : 10.1166/jbn.2015.1946

C. C. Skinner, E. L. Mcmichael, A. C. Jaime-ramirez, Z. B. Abrams, R. J. Lee et al., Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions, Melanoma Research, vol.26, issue.4, pp.329-337, 2016.
DOI : 10.1097/CMR.0000000000000258

URL : http://europepmc.org/articles/pmc4927392?pdf=render

Y. Gupta, A. Jain, P. Jain, and S. K. Jain, Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells, Journal of Drug Targeting, vol.52, issue.3, pp.231-240, 2007.
DOI : 10.1016/j.ab.2004.05.034

J. H. Kang, G. Battogtokh, and Y. T. Ko, Folate-Targeted Liposome Encapsulating Chitosan/Oligonucleotide Polyplexes for Tumor Targeting, AAPS PharmSciTech, vol.15, issue.5, pp.1087-1092, 2014.
DOI : 10.1208/s12249-014-0136-5

URL : http://europepmc.org/articles/pmc4179671?pdf=render

M. Li, Y. Liu, L. Feng, F. Liu, L. Zhang et al., Polymeric complex micelles with double drug-loading strategies for folate-mediated paclitaxel delivery, Colloids and Surfaces B: Biointerfaces, vol.131, pp.191-201, 2015.
DOI : 10.1016/j.colsurfb.2015.04.057

S. Taymouri, J. Varshosaz, F. Hassanzadeh, S. Haghjooy-javanmard, and N. Dana, Optimisation of processing variables effective on self-assembly of folate targeted Synpronic-based micelles for docetaxel delivery in melanoma cells, IET Nanobiotechnology, vol.9, issue.5, pp.306-313, 2015.
DOI : 10.1049/iet-nbt.2014.0076

A. Gabizon, A. T. Horowitz, D. Goren, D. Tzemach, F. Mandelbaum-shavit et al., Targeting Folate Receptor with Folate Linked to Extremities of Poly(ethylene glycol)-Grafted Liposomes:?? In Vitro Studies, Bioconjugate Chemistry, vol.10, issue.2, pp.289-298, 1999.
DOI : 10.1021/bc9801124

V. Ganapathy, M. Thangaraju, and P. D. Prasad, Nutrient transporters in cancer: Relevance to Warburg hypothesis and beyond, Pharmacology & Therapeutics, vol.121, issue.1, pp.29-40, 2009.
DOI : 10.1016/j.pharmthera.2008.09.005

L. M. Ferreira, Cancer metabolism: The Warburg effect today, Experimental and Molecular Pathology, vol.89, issue.3, pp.372-380, 2010.
DOI : 10.1016/j.yexmp.2010.08.006

P. B. Chapman, Mechanisms of Resistance to RAF Inhibition in Melanomas Harboring a BRAF Mutation, American Society of Clinical Oncology Educational Book, vol.33, 2013.
DOI : 10.1200/EdBook_AM.2013.33.80

E. M. Hersh, S. J. O-'day, J. Powderly, K. D. Khan, A. C. Pavlick et al., A phase II multicenter study of ipilimumab with or without dacarbazine in chemotherapy-na??ve patients with advanced melanoma, Investigational New Drugs, vol.15, issue.3, pp.489-498, 2011.
DOI : 10.1158/1078-0432.CCR-09-1024