T. , Instability and decay of the primary structure of DNA, Nature, vol.362, issue.6422, pp.709-715, 1993.
DOI : 10.1038/362709a0

S. P. Jackson, Detecting, signalling and repairing DNA double-strand breaks, Biochemical Society Transactions, vol.29, issue.6, pp.655-661, 2001.
DOI : 10.1042/bst0290655

P. Baumann and S. C. West, Role of the human RAD51 protein in homologous recombination and double-stranded-break repair, Trends in Biochemical Sciences, vol.23, issue.7, pp.247-251, 1998.
DOI : 10.1016/S0968-0004(98)01232-8

M. E. Stauffer and W. J. Chazin,

. Figreymer, Amino acid residue Y54 and Y315 position can explain the effect of phosphomimetic modifications on Rad51 activity A. Structural environment of Y54E, the close relationship with F195 is highlighted. B. Structural environment of Y315E, the close relationship to L2 loop via K284 and K285 and to ATP binding pocket via D316 and E322 is highlighted. and Rad51 promotes exchange on single-stranded DNA, Based on HsRad51 nucleofilament model, pp.279-25638, 2004.

P. Chi, S. Van-komen, M. G. Sehorn, S. Sigurdsson, and P. Sung, Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function, DNA Repair, vol.5, issue.3, pp.381-391, 2006.
DOI : 10.1016/j.dnarep.2005.11.005

M. Modesti, D. Ristic, T. Van-der-heijden, C. Dekker, J. Van-mameren et al., Fluorescent Human RAD51 Reveals Multiple Nucleation Sites and Filament Segments Tightly Associated along a Single DNA Molecule, Structure, vol.15, issue.5, p.15, 1993.
DOI : 10.1016/j.str.2007.04.003

C. S. Sørensen, L. T. Hansen, J. Dziegielewski, R. G. Syljuåsen, C. Lundin et al., The cell-cycle checkpoint kinase Chk1 is required for mammalian homologous recombination repair, Nature Cell Biology, vol.19, issue.2, 2005.
DOI : 10.1093/emboj/19.24.6675

K. Yata, J. Lloyd, S. Maslen, J. Y. Bleuyard, M. Skehel et al., Plk1 and CK2 Act in Concert to Regulate Rad51 during DNA Double Strand Break Repair, Molecular Cell, vol.45, issue.3, 2012.
DOI : 10.1016/j.molcel.2011.12.028

URL : https://doi.org/10.1016/j.molcel.2011.12.028

M. Popova, H. Shimizu, K. Yamamoto, M. Lebechec, M. Takahashi et al., Detection of c-Abl kinase-promoted phosphorylation of Rad51 by specific antibodies reveals that Y54 phosphorylation is dependent on that of Y315, FEBS Letters, vol.339, issue.12, pp.1867-1872, 2009.
DOI : 10.1016/j.jmb.2004.04.017

URL : https://hal.archives-ouvertes.fr/hal-00414630

Z. M. Yuan, Y. Huang, T. Ishiko, S. Nakada, T. Utsugisawa et al., Regulation of Rad51 Function by c-Abl in Response to DNA Damage, Journal of Biological Chemistry, vol.15, issue.7, pp.273-3799, 1998.
DOI : 10.1038/sj.onc.1201376

URL : http://www.jbc.org/content/273/7/3799.full.pdf

G. Chen, S. S. Yuan, W. Liu, Y. Xu, K. Trujillo et al., Radiationinduced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl, J. Biol. Chem, issue.18, p.274, 1999.
DOI : 10.1074/jbc.274.18.12748

URL : http://www.jbc.org/content/274/18/12748.full.pdf

H. Shimizu, M. Popova, F. Fleury, M. Kobayashi, N. Hayashi et al., c-ABL tyrosine kinase stabilizes RAD51 chromatin association, ABL tyrosine kinase stabilizes RAD51 chromatin association, pp.286-291, 2009.
DOI : 10.1016/j.bbrc.2009.03.020

URL : https://hal.archives-ouvertes.fr/hal-00414638

A. Slupianek, Y. Dasgupta, S. Y. Ren, E. Gurdek, M. Donlin et al., Targeting RAD51 phosphotyrosine-315 to prevent unfaithful recombination repair in BCR-ABL1 leukemia, Blood, vol.118, issue.4, 2011.
DOI : 10.1182/blood-2010-09-307256

URL : http://www.bloodjournal.org/content/bloodjournal/118/4/1062.full.pdf

J. Nomme, Y. Takizawa, S. F. Martinez, A. Renodon-corni-ere, F. Fleury et al., Inhibition of filament formation of human Rad51 protein by a small peptide derived from the BRC-motif of the BRCA2 protein, Genes to Cells, vol.59, issue.5, pp.471-481, 2008.
DOI : 10.1073/pnas.111005398

URL : https://hal.archives-ouvertes.fr/hal-00414268

C. R. Lee, Y. H. Park, Y. R. Kim, A. Peterkofsky, and Y. J. Seok, Phosphorylationdependent mobility shift of proteins on SDS-PAGE is due to decreased binding of SDS, Bull. Korean Chem. Soc, p.34, 2013.
DOI : 10.5012/bkcs.2013.34.7.2063

URL : http://ocean.kisti.re.kr/downfile/volume/chemical/JCGMCS/2013/v34n7/JCGMCS_2013_v34n7_2063.pdf

P. Baumann, F. E. Benson, and S. C. West, Human Rad51 Protein Promotes ATP-Dependent Homologous Pairing and Strand Transfer Reactions In Vitro, Cell, vol.87, issue.4, pp.757-766, 1996.
DOI : 10.1016/S0092-8674(00)81394-X

URL : https://doi.org/10.1016/s0092-8674(00)81394-x

M. J. Moutin, M. Cuillel, C. Rapin, R. Miras, M. Anger et al., Measurements of ATP binding on the large cytoplasmic loop of the sarcoplasmic reticulum Ca(2þ)-ATPase overexpressed in Escherichia coli, J. Biol. Chem, pp.26915-11147, 1994.

Y. Matsuo, I. Sakane, Y. Takizawa, M. Takahashi, and H. Kurumizaka, Roles of the human Rad51 L1 and L2 loops in DNA binding, FEBS Journal, vol.157, issue.14, pp.3148-3159, 2006.
DOI : 10.1016/0003-2697(79)90115-5

URL : https://hal.archives-ouvertes.fr/hal-00093026

A. B. Conway, T. W. Lynch, Y. Zhang, G. S. Fortin, C. W. Fung et al., Crystal structure of a Rad51 filament, pp.11-791, 2004.

R. Amunugama, Y. He, S. Willcox, R. A. Forties, K. S. Shim et al., RAD51 Protein ATP Cap Regulates Nucleoprotein Filament Stability, Journal of Biological Chemistry, vol.262, issue.12, pp.14-983, 1993.
DOI : 10.1093/emboj/17.4.1161

A. Candelli, J. T. Holthausen, M. Depken, I. Brouwer, M. A. Franker et al., Visualization and quantification of nascent RAD51 filament formation at single-monomer resolution, Proceedings of the National Academy of Sciences, vol.14, issue.6, pp.15090-15095, 2014.
DOI : 10.1529/biophysj.106.089466

O. R. Davies and L. Pellegrini, Interaction with the BRCA2 C terminus protects RAD51???DNA filaments from disassembly by BRC repeats, Nature Structural & Molecular Biology, vol.236, issue.6, pp.475-483, 2007.
DOI : 10.1016/S0921-8777(97)00028-1

C. Esnault, A. Renodon-corni-ere, M. Takahashi, N. Casse, N. Delorme et al., Ch enais, Assessment of DNA binding to human Rad51 protein by using quartz crystal microbalance and atomic force microscopy: effects of ADP and BRC4-28 peptide inhibitor, Chemphyschem A Eur, J. Chem. Phys. Phys. Chem, issue.17, pp.15-3753, 2014.

L. Pellegrini, D. S. Yu, T. Lo, S. Anand, M. Lee et al., Insights into DNA recombination from the structure of a RAD51???BRCA2 complex, Nature, vol.277, issue.6913, 2002.
DOI : 10.1016/S0076-6879(97)77028-9

H. C. Reinhardt and M. B. Yaffe, Kinases that control the cell cycle in response to DNA damage: Chk1, Chk2, and MK2, Current Opinion in Cell Biology, vol.21, issue.2, pp.245-255, 2009.
DOI : 10.1016/j.ceb.2009.01.018

I. Majsterek, A. Slupianek, G. Hoser, T. Sk-orski, and J. Blasiak, ABL-fusion oncoproteins activate multi-pathway of DNA repair: role in drug resistance?, Biochimie, vol.86, issue.1, pp.53-65, 2004.
DOI : 10.1016/j.biochi.2003.10.008

L. Rink, A. Slupianek, T. Stoklosa, M. Nieborowska-skorska, K. Urbanska et al., Enhanced phosphorylation of Nbs1, a member of DNA repair/checkpoint complex Mre11-RAD50-Nbs1, can be targeted to increase the efficacy of imatinib mesylate against BCR/ABL-positive leukemia cells, Blood, vol.110, issue.2, pp.651-660, 2007.
DOI : 10.1182/blood-2006-08-042630

Y. Takizawa, T. Kinebuchi, W. Kagawa, S. Yokoyama, T. Shibata et al., Mutational analyses of the human Rad51-Tyr315 residue, a site for phosphorylation in leukaemia cells, Genes to Cells, vol.10, issue.9, pp.781-790, 2004.
DOI : 10.1038/nrm1127

P. Pecina, G. G. Borisenko, N. A. Belikova, Y. Y. Tyurina, A. Pecinova et al., Phosphomimetic substitution of cytochrome C tyrosine 48 decreases respiration and binding to cardiolipin and abolishes ability to trigger downstream caspase activation, Biochemistry, vol.49, pp.31-6705, 2010.
DOI : 10.1021/bi100486s

A. Persaud, P. Alberts, S. Mari, J. Tong, R. Murchie et al., Tyrosine phosphorylation of NEDD4 activates its ubiquitin ligase activity, Science Signaling, vol.32, issue.suppl_2, p.95, 2014.
DOI : 10.1093/nar/gkh381

T. K. Prasad, C. C. Yeykal, and E. C. Greene, Visualizing the Assembly of Human Rad51 Filaments on Double-stranded DNA, Journal of Molecular Biology, vol.363, issue.3, pp.713-728, 2006.
DOI : 10.1016/j.jmb.2006.08.046

L. T. Chen, T. P. Ko, Y. W. Chang, K. A. Lin, A. H. Wang et al., Structural and Functional Analyses of Five Conserved Positively Charged Residues in the L1 and N-Terminal DNA Binding Motifs of Archaeal RadA Protein, PLoS ONE, vol.101, issue.9, p.858, 2007.
DOI : 10.1371/journal.pone.0000858.s001

X. P. Zhang, K. I. Lee, J. A. Solinger, K. Kiianitsa, and W. D. Heyer, Gly-103 in the Nterminal domain of Saccharomyces cerevisiae Rad51 protein is critical for DNA binding, J. Biol. Chem, issue.28, p.280, 2005.

S. Conilleau, Y. Takizawa, H. Tachiwana, F. Fleury, H. Kurumizaka et al., Location of Tyrosine 315, a Target for Phosphorylation by cAbl Tyrosine Kinase, at the Edge of the Subunit???Subunit Interface of the Human Rad51 Filament, Journal of Molecular Biology, vol.339, issue.4, pp.797-804, 2004.
DOI : 10.1016/j.jmb.2004.04.017

C. Morrison, A. Shinohara, E. Sonoda, Y. Yamaguchi-iwai, M. Takata et al., The Essential Functions of Human Rad51 Are Independent of ATP Hydrolysis, Molecular and Cellular Biology, vol.19, issue.10, 1999.
DOI : 10.1128/MCB.19.10.6891

URL : http://europepmc.org/articles/pmc84684?pdf=render