S. K. Carlsson, S. P. Brothers, and C. Wahlestedt, Emerging treatment strategies for glioblastoma multiforme, EMBO Molecular Medicine, vol.6, issue.11, 2014.
DOI : 10.15252/emmm.201302627

URL : http://embomolmed.embopress.org/content/embomm/6/11/1359.full.pdf

R. Stupp, W. P. Mason, M. J. Van-den-bent, M. Weller, B. Fisher et al., Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, pp.352-987, 2005.

K. Yoshimoto, M. Mizoguchi, N. Hata, H. Murata, R. Hatae et al., Complex DNA repair pathways as possible therapeutic targets to overcome temozolomide resistance in glioblastoma, Front, Oncol, vol.2, issue.186, 2012.
DOI : 10.3389/fonc.2012.00186

URL : https://www.frontiersin.org/articles/10.3389/fonc.2012.00186/pdf

M. Weller, R. Stupp, G. Reifenberger, A. A. Brandes, M. J. Van-den-bent et al., MGMT promoter methylation in malignant gliomas: ready for personalized medicine?, Nature Reviews Neurology, vol.113, issue.1, pp.39-51, 2010.
DOI : 10.1093/jnen/60.8.808

URL : http://www.zora.uzh.ch/id/eprint/32639/3/Weller_for_styling_MH.pdf

M. E. Hegi, L. Liu, J. G. Herman, R. Stupp, W. Wick et al., -Methylguanine Methyltransferase (MGMT) Promoter Methylation With Clinical Outcomes in Glioblastoma and Clinical Strategies to Modulate MGMT Activity, Journal of Clinical Oncology, vol.26, issue.25, pp.4189-4199, 2008.
DOI : 10.1200/JCO.2007.11.5964

URL : https://www.zora.uzh.ch/id/eprint/4020/2/Hegi_2008Vo.pdf

, TMZ induces the degradation of Mcl-1 by the proteasome which is dependent on HB-EGF, Fig, vol.4

, A) Protein expression of EGFR, pEGFR, USP9X, Mcl-1, and BAG1 in sh Scr U251 and sh HB-EGF U251 cells up after 50 mM TMZ treatment

, Protein expression of Mcl-1 in sh Scr U251 and sh HB-EGF U251 cells after treatment with 10 mM MG132

, Quantification of the interactions between USP9X and Mcl-1 using PLA, 48 h after 50 mM TMZ treatment

, EGF after TMZ treatment in glioma (see discussion) Briefly, TMZ induces DNA DSBs which promote Mcl-1 degradation. HB-EGF can act both on H2AX phosphorylation and formation of foci as well as Mcl-1 degradation by inhibiting USP9X/Mcl-1 interaction (Pathway 1). Alternatively, the sole effect of HB- EGF could be on the increase of Mcl-1 degradation by the proteasome and the effect on gH2AX could be a consequence of the disappearance of Mcl-1 (Pathway 2) The role of EGFR signalling pathway (if any) remains to be established at this stage

H. W. Lo, EGFR-Targeted Therapy in Malignant Glioma: Novel Aspects and Mechanisms of Drug Resistance, Current Molecular Pharmacology, vol.3, issue.1, pp.37-52, 2010.
DOI : 10.2174/1874467211003010037

A. Murat, E. Migliavacca, T. Gorlia, W. L. Lambiv, T. Shay et al., Stem Cell???Related ???Self-Renewal??? Signature and High Epidermal Growth Factor Receptor Expression Associated With Resistance to Concomitant Chemoradiotherapy in Glioblastoma, Journal of Clinical Oncology, vol.26, issue.18
DOI : 10.1200/JCO.2007.15.7164

, Soc. Clin. Oncol, vol.26, pp.3015-3024, 2008.

X. Li, C. Wu, N. Chen, H. Gu, A. Yen et al., PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma, pp.33440-33450, 2016.

B. Singh, G. Carpenter, and R. J. Coffey, EGF receptor ligands: recent advances, F1000Research, vol.5, 1000.
DOI : 10.12688/f1000research.9025.1

URL : https://f1000research.com/articles/5-2270/v1/pdf

F. Vinante and A. Rigo, Heparin-Binding Epidermal Growth Factor-like Growth Factor/Diphtheria Toxin Receptor in Normal and Neoplastic Hematopoiesis, Toxins, vol.7, issue.6, 2013.
DOI : 10.1016/j.bbrc.2012.12.102

K. Mishima, S. Higashiyama, A. Asai, K. Yamaoka, Y. Nagashima et al., Heparin-binding epidermal growth factorlike growth factor stimulates mitogenic signaling and is highly expressed in human malignant gliomas, Acta neuropathol, pp.96-322, 1998.

C. H. Shin, J. P. Robinson, J. A. Sonnen, A. E. Welker, D. X. Yu et al., HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss, HBEGF promotes gliomagenesis in the context of Ink4a/Arf and Pten loss, pp.4610-4618, 2017.
DOI : 10.1126/scisignal.2004088

C. Gratas, Q. Sery, M. Rabe, L. Oliver, and F. M. Vallette, Bak and Mcl-1 are essential for Temozolomide induced cell death in human glioma, Oncotarget, vol.5, issue.9, pp.2428-2435, 2014.
DOI : 10.18632/oncotarget.1642

R. M. Perciavalle and J. T. Opferman, Delving deeper: MCL-1's contributions to normal and cancer biology, Trends in Cell Biology, vol.23, issue.1, pp.22-29, 2013.
DOI : 10.1016/j.tcb.2012.08.011

M. Schwickart, X. Huang, J. R. Lill, J. Liu, R. Ferrando et al., Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival, 2010.

D. Tripodi, S. Quemener, K. Renaudin, C. Ferron, O. Malard et al., Gene expression profiling in sinonasal adenocarcinoma, BMC Medical Genomics, vol.55, issue.4, p.65, 2009.
DOI : 10.3322/canjclin.55.4.242

URL : https://hal.archives-ouvertes.fr/inserm-00663564

J. L. Munoz, V. Rodriguez-cruz, S. J. Greco, S. H. Ramkissoon, K. L. Ligon et al., Temozolomide resistance in glioblastoma cells occurs partly through epidermal growth factor receptor-mediated induction of connexin 43, Cell Death & Disease, vol.4, issue.3, p.1145, 2014.
DOI : 10.1074/jbc.M703026200

L. Oliver, E. Hue, Q. Sery, A. Lafargue, C. Pecqueur et al., Differentiation-Related Response to DNA Breaks in Human Mesenchymal Stem Cells, STEM CELLS, vol.2, issue.4, pp.31-800, 2013.
DOI : 10.18632/aging.100197

URL : https://hal.archives-ouvertes.fr/hal-01968395

S. Jamil, C. Stoica, T. L. Hackett, and V. Duronio, MCL-1 localizes to sites of DNA damage and regulates DNA damage response, Cell Cycle, vol.10, issue.14, pp.2843-2855, 2010.
DOI : 10.1016/S1044-0305(03)00204-6

A. R. Mattoo, R. K. Pandita, S. Chakraborty, V. Charaka, K. Mujoo et al., ABSTRACT, Molecular and Cellular Biology, vol.37, issue.3, 2017.
DOI : 10.1128/MCB.00535-16

J. Lin, L. Hutchinson, S. M. Gaston, G. Raab, and M. R. Freeman, BAG-1 is a novel cytoplasmic binding partner of the membrane form of heparin-binding EGFlike growth factor: a unique role for proHB-EGF in cell survival regulation, J. Biol. Chem, pp.276-30127, 2001.

D. P. Stewart, B. Koss, M. Bathina, R. M. Perciavalle, K. Bisanz et al., Ubiquitin-Independent Degradation of Antiapoptotic MCL-1, Molecular and Cellular Biology, vol.30, issue.12, pp.30-3099, 2010.
DOI : 10.1128/MCB.01266-09

E. Hervouet, P. Hulin, F. M. Vallette, and P. F. Cartron, Proximity ligation in situ assay for monitoring the global DNA methylation in cells, BMC Biotechnology, vol.11, issue.1, p.31, 2011.
DOI : 10.1364/OL.22.001905

URL : https://hal.archives-ouvertes.fr/inserm-00587414

F. Wang, R. Liu, S. W. Lee, C. M. Sloss, J. Couget et al., Heparin-binding EGF-like growth factor is an early response gene to chemotherapy and contributes to chemotherapy resistance, Oncogene, vol.25, issue.14, 2007.
DOI : 10.1016/j.molcel.2005.09.005

M. Kriegs, U. Kasten-pisula, T. Rieckmann, K. Holst, J. Saker et al., The epidermal growth factor receptor modulates DNA doublestrand break repair by regulating non-homologous end-joining, pp.889-897, 2010.

D. Nijhawan, M. Fang, E. Traer, Q. Zhong, W. Gao et al., Elimination of Mcl-1 is required for the initiation of apoptosis following ultraviolet irradiation, Genes & Development, vol.17, issue.12, pp.17-1475, 2003.
DOI : 10.1101/gad.1093903

A. Cuconati, C. Mukherjee, D. Perez, and E. White, DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells, Genes & Development, vol.17, issue.23, pp.2922-2932, 2003.
DOI : 10.1101/gad.1156903

H. W. Huang and C. Yu, The NMR solution structure of the ubiquitin homology domain of Bcl-2-associated athanogene 1 (BAG-1-UBH) from Mus musculus, Biochemical and Biophysical Research Communications, vol.431, issue.1, pp.431-86, 2013.
DOI : 10.1016/j.bbrc.2012.12.082

P. Pawlikowska, I. Leray, B. De-laval, S. Guihard, R. Kumar et al., ATM-dependent expression of IEX-1 controls nuclear accumulation of Mcl-1 and the DNA damage response, Cell Death & Differentiation, vol.56, issue.11, pp.1739-1750, 2010.
DOI : 10.1038/ncb1883

URL : https://hal.archives-ouvertes.fr/hal-00535923