F. Squitieri, A. Griguoli, G. Capelli, A. Porcellini, D. 'alessio et al., gene analysis of prevalence in Italy, Clinical Genetics, vol.9, issue.9, 2015.
DOI : 10.1371/journal.pone.0107434

E. Clabough, huntington's Disease: The Past, Present, and future search for Disease Modifiers, Yale J Biol Med, vol.86, pp.217-23766742, 2013.

J. Tepper, T. Koós, and C. Wilson, GABAergic microcircuits in the neostriatum, Trends in Neurosciences, vol.27, issue.11, pp.662-669, 2004.
DOI : 10.1016/j.tins.2004.08.007

T. Indersmitten, C. Tran, C. Cepeda, and M. Levine, Altered excitatory and inhibitory inputs to striatal medium-sized spiny neurons and cortical pyramidal neurons in the Q175 mouse model of Huntington's disease, Journal of Neurophysiology, vol.23, issue.7, pp.2953-2966, 2015.
DOI : 10.1038/nm.3514

K. Shannon and A. Fraint, Therapeutic advances in Huntington's Disease, Movement Disorders, vol.69, issue.11, p.26226924, 2015.
DOI : 10.1002/syn.21793

I. Park, N. Arora, H. Huo, N. Maherali, T. Ahfeldt et al., Disease-Specific Induced Pluripotent Stem Cells, Cell, vol.134, issue.5, pp.877-886, 2008.
DOI : 10.1016/j.cell.2008.07.041

T. Philips, J. Rothstein, and M. Pouladi, Preclinical models: Needed in translation? A Pro/Con debate, Movement Disorders, vol.17, issue.11, pp.1391-1396, 2014.
DOI : 10.1038/nn.3691

L. Wang and Z. Qin, Animal models of Huntington's disease: implications in uncovering pathogenic mechanisms and developing therapies, Acta Pharmacologica Sinica, vol.22, issue.19, pp.1287-1302, 2006.
DOI : 10.1038/nature01301

N. Dey, M. Bombard, B. Roland, S. Davidson, M. Lu et al., Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington's disease, Behavioural Brain Research, vol.214, issue.2, pp.193-200, 2010.
DOI : 10.1016/j.bbr.2010.05.023

J. Rossignol, C. Boyer, X. Lévèque, K. Fink, R. Thinard et al., Mesenchymal stem cell transplantation and DMEM administration in a 3NP rat model of Huntington's disease: Morphological and behavioral outcomes, Behavioural Brain Research, vol.217, issue.2, pp.369-378, 2011.
DOI : 10.1016/j.bbr.2010.11.006

M. Mcleod, N. Kobayashi, A. Sen, B. Baghbaderani, D. Sadi et al., Transplantation of GABAergic Cells Derived from Bioreactor-Expanded Human Neural Precursor Cells Restores Motor and Cognitive Behavioral Deficits in a Rodent Model of Huntington's Disease, Cell Transplantation, vol.7, issue.6, pp.2237-2256, 2013.
DOI : 10.1038/nrn1919

E. Yhnell, S. Dunnett, and S. Brooks, A Longitudinal Motor Characterisation of the HdhQ111 Mouse Model of Huntington???s Disease, Journal of Huntington's Disease, vol.20, issue.1, pp.149-161, 2016.
DOI : 10.1016/j.nbd.2005.01.024

I. Kerkis, M. Haddad, C. Valverde, and S. Glosman, Neural and mesenchymal stem cells in animal models of Huntington???s disease: past experiences and future challenges, Stem Cell Research & Therapy, vol.8, issue.Suppl 2, pp.232-26667114, 2015.
DOI : 10.1371/journal.pone.0075682

URL : https://stemcellres.biomedcentral.com/track/pdf/10.1186/s13287-015-0248-1?site=stemcellres.biomedcentral.com

S. Precious, R. Zietlow, S. Dunnett, C. Kelly, and A. Rosser, Is there a place for human fetal-derived stem cells for cell replacement therapy in Huntington's disease?, Neurochemistry International, vol.106, pp.114-121, 2017.
DOI : 10.1016/j.neuint.2017.01.016

URL : https://doi.org/10.1016/j.neuint.2017.01.016

M. Emmert-buck, R. Bonner, P. Smith, R. Chuaqui, Z. Zhuang et al., Laser Capture Microdissection, Science, vol.55, issue.5289, pp.998-1001, 1996.
DOI : 10.1016/S0046-8177(86)80156-3

K. Schütze and G. Lahr, Identification of expressed genes by laser-mediated manipulation of single cells, Nature Biotechnology, vol.151, issue.8, pp.737-742, 1998.
DOI : 10.1016/0169-328X(95)00136-G

Y. Ou, X. Niu, and F. Ren, Expression of key ion channels in the rat cardiac conduction system by laser capture microdissection and quantitative real-time PCR, Experimental Physiology, vol.88, issue.9, pp.938-945, 2010.
DOI : 10.1161/01.RES.88.5.536

H. Kumamaru, Y. Ohkawa, H. Saiwai, H. Yamada, K. Kubota et al., Direct isolation and RNA-seq reveal environment-dependent properties of engrafted neural stem/progenitor cells, Nature Communications, vol.176, issue.1, p.23072808, 2012.
DOI : 10.2353/ajpath.2010.090839

URL : http://www.nature.com/articles/ncomms2132.pdf

K. Yokota, K. Kobayakawa, K. Kubota, A. Miyawaki, H. Okano et al., Engrafted Neural Stem/Progenitor Cells Promote Functional Recovery through Synapse Reorganization with Spared Host Neurons after Spinal Cord Injury, Stem Cell Reports, vol.5, issue.2, pp.264-277, 2015.
DOI : 10.1016/j.stemcr.2015.06.004

URL : https://doi.org/10.1016/j.stemcr.2015.06.004

N. Daviaud, E. Garbayo, N. Lautram, F. Franconi, L. Lemaire et al., Modeling nigrostriatal degeneration in organotypic cultures, a new ex vivo model of Parkinson???s disease, Neuroscience, vol.256, pp.10-22, 2014.
DOI : 10.1016/j.neuroscience.2013.10.021

B. Navarro-galve, A. Villa, C. Bueno, L. Thompson, J. Johansen et al., Gene marking of human neural stem/precursor cells using green fluorescent proteins, The Journal of Gene Medicine, vol.173, issue.1, pp.18-29, 2005.
DOI : 10.1006/exnr.2001.7750

A. Villa, E. Snyder, A. Vescovi, and A. Martínez-serrano, Establishment and Properties of a Growth Factor-Dependent, Perpetual Neural Stem Cell Line from the Human CNS, Experimental Neurology, vol.161, issue.1, pp.67-84, 2000.
DOI : 10.1006/exnr.1999.7237

N. Daviaud, E. Garbayo, L. Sindji, A. Martínez-serrano, P. Schiller et al., Survival, Differentiation, and Neuroprotective Mechanisms of Human Stem Cells Complexed With Neurotrophin-3-Releasing Pharmacologically Active Microcarriers in an Ex Vivo Model of Parkinson's Disease, STEM CELLS Translational Medicine, vol.17, issue.6, pp.670-684, 2015.
DOI : 10.1007/s10495-011-0679-9

G. Delcroix, E. Garbayo, L. Sindji, O. Thomas, C. Vanpouille-box et al., The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats, Biomaterials, vol.32, issue.6, pp.1560-1573, 2011.
DOI : 10.1016/j.biomaterials.2010.10.041

URL : https://hal.archives-ouvertes.fr/inserm-00541842

G. Delcroix, K. Curtis, P. Schiller, and C. Montero-menei, EGF and bFGF pre-treatment enhances neural specification and the response to neuronal commitment of MIAMI cells, Differentiation, vol.80, issue.4-5, pp.213-227, 2010.
DOI : 10.1016/j.diff.2010.07.001

F. Karege, M. Schwald, and M. Cisse, Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets, Neuroscience Letters, vol.328, issue.3, pp.261-2643940, 2002.
DOI : 10.1016/S0304-3940(02)00529-3

C. Riley, B. Hutter-paier, M. Windisch, E. Doppler, H. Moessler et al., A peptide preparation protects cells in organotypic brain slices against cell death after glutamate intoxication, Journal of Neural Transmission, vol.68, issue.[Suppl], pp.103-110, 1996.
DOI : 10.1007/978-3-7091-6467-9_25

G. Lynch, E. Kramar, C. Rex, Y. Jia, D. Chappas et al., Brain-Derived Neurotrophic Factor Restores Synaptic Plasticity in a Knock-In Mouse Model of Huntington's Disease, Journal of Neuroscience, vol.27, issue.16, pp.4424-4434, 2007.
DOI : 10.1523/JNEUROSCI.5113-06.2007

E. Pecho-vrieseling, C. Rieker, S. Fuchs, D. Bleckmann, M. Esposito et al., Transneuronal propagation of mutant huntingtin contributes to non???cell autonomous pathology in neurons, Nature Neuroscience, vol.19, issue.8, pp.1064-1072, 2014.
DOI : 10.1126/science.1227157

C. Proenca, N. Stoehr, M. Bernhard, S. Seger, C. Genoud et al., Atg4b-Dependent Autophagic Flux Alleviates Huntington???s Disease Progression, PLoS ONE, vol.104, issue.5, pp.68357-23861892, 2013.
DOI : 10.1371/journal.pone.0068357.g008

URL : https://doi.org/10.1371/journal.pone.0068357

L. Jäderstad, J. Jäderstad, and E. Herlenius, Graft and host interactions following transplantation of neural stem cells to organotypic striatal cultures, Regenerative Medicine, vol.9, issue.6, pp.901-917, 2010.
DOI : 10.1038/nrn2477

M. Tanvig, M. Blaabjerg, R. Andersen, A. Villa, A. Rosager et al., A brain slice culture model for studies of endogenous and exogenous precursor cell migration in the rostral migratory stream, Brain Research, vol.1295, pp.1-12, 2009.
DOI : 10.1016/j.brainres.2009.07.075

A. Kaiser, A. Kale, E. Novozhilova, P. Siratirakun, J. Aquino et al., Brain stem slice conditioned medium contains endogenous BDNF and GDNF that affect neural crest boundary cap cells in co-culture, Brain Research, vol.1566, pp.12-23, 2014.
DOI : 10.1016/j.brainres.2014.04.006

J. Staal, S. Alexander, Y. Liu, T. Dickson, and J. Vickers, Characterization of Cortical Neuronal and Glial Alterations during Culture of Organotypic Whole Brain Slices from Neonatal and Mature Mice, PLoS ONE, vol.183, issue.7, pp.22040-21789209, 2011.
DOI : 10.1371/journal.pone.0022040.s004

C. Humpel, Organotypic brain slice cultures: A review, Neuroscience, vol.305, pp.86-98, 2015.
DOI : 10.1016/j.neuroscience.2015.07.086

URL : https://doi.org/10.1016/j.neuroscience.2015.07.086

A. Rasmussen, R. Macias, P. Yescas, A. Ochoa, G. Davila et al., Huntington Disease in Children: Genotype-Phenotype Correlation, Neuropediatrics, vol.31, issue.4, pp.190-194, 2000.
DOI : 10.1055/s-2000-7461

H. Kim, E. Kim, M. Park, E. Lee, and K. Namkoong, Organotypic hippocampal slice culture from the adult mouse brain: A versatile tool for translational neuropsychopharmacology, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol.41, pp.36-43, 2013.
DOI : 10.1016/j.pnpbp.2012.11.004

F. Cavaliere, E. Vicente, and C. Matute, An organotypic culture model to study nigro-striatal degeneration, Journal of Neuroscience Methods, vol.188, issue.2, pp.205-212, 2010.
DOI : 10.1016/j.jneumeth.2010.02.008

K. Ostergaard, S. Jones, C. Hyman, and J. Zimmer, Effects of Donor Age and Brain-Derived Neurotrophic Factor on the Survival of Dopaminergic Neurons and Axonal Growth in Postnatal Rat Nigrostriatal Cocultures, Experimental Neurology, vol.142, issue.2, pp.340-350, 1996.
DOI : 10.1006/exnr.1996.0203

X. Jin, H. Hu, P. Mathers, and A. Agmon, Brain-Derived Neurotrophic Factor Mediates Activity-Dependent Dendritic Growth in Nonpyramidal Neocortical Interneurons in Developing Organotypic Cultures, The Journal of Neuroscience, vol.23, issue.13, pp.5662-5673, 2003.
DOI : 10.1523/JNEUROSCI.23-13-05662.2003

V. Rymar, R. Sasseville, K. Luk, and A. Sadikot, Neurogenesis and stereological morphometry of calretinin-immunoreactive GABAergic interneurons of the neostriatum, The Journal of Comparative Neurology, vol.23, issue.3, pp.325-339, 2004.
DOI : 10.1016/S0896-6273(00)80801-6

C. Lau and V. Murthy, Activity-Dependent Regulation of Inhibition via GAD67, Journal of Neuroscience, vol.32, issue.25, pp.8521-8531, 2012.
DOI : 10.1523/JNEUROSCI.1245-12.2012

URL : http://www.jneurosci.org/content/jneuro/32/25/8521.full.pdf

D. Shear, J. Dong, C. Gundy, K. Haik-creguer, and G. Dunbar, Comparison of intrastriatal injections of quinolinic acid and 3-nitropropionic acid for use in animal models of Huntington's disease, Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol.22, issue.7, pp.1217-1240, 1998.
DOI : 10.1016/S0278-5846(98)00070-0

W. Jiang, F. Büchele, A. Papazoglou, M. Döbrössy, and G. Nikkhah, Ketamine anaesthesia interferes with the quinolinic acid-induced lesion in a rat model of Huntington's disease, Journal of Neuroscience Methods, vol.179, issue.2, pp.219-223, 2009.
DOI : 10.1016/j.jneumeth.2009.01.033

M. Ehrlich, Huntington???s Disease and the Striatal Medium Spiny Neuron: Cell-Autonomous and Non-Cell-Autonomous Mechanisms of Disease, Neurotherapeutics, vol.36, issue.pt 6, pp.270-284, 2012.
DOI : 10.1016/j.nbd.2009.08.012

URL : https://link.springer.com/content/pdf/10.1007%2Fs13311-012-0112-2.pdf

J. Vonsattel, An Improved Approach to Prepare Human Brains for Research, Journal of Neuropathology and Experimental Neurology, vol.54, issue.1, pp.42-56, 1995.
DOI : 10.1097/00005072-199501000-00006

D. Cummings, Y. Alaghband, M. Hickey, P. Joshi, S. Hong et al., A critical window of CAG repeat-length correlates with phenotype severity in the R6/2 mouse model of Huntington's disease, Journal of Neurophysiology, vol.22, issue.2, pp.677-691, 2012.
DOI : 10.1083/jcb.200306038

P. Nopoulos, Huntington disease: a single-gene degenerative disorder of the striatum, Dialogues Clin Neurosci, vol.18, pp.91-98, 2016.

L. Menalled, Knock-in mouse models of Huntington???s disease, NeuroRX, vol.12, issue.3, pp.465-470, 2005.
DOI : 10.1093/hmg/ddg046

L. Menalled, A. Kudwa, S. Miller, J. Fitzpatrick, J. Watson-johnson et al., Comprehensive Behavioral and Molecular Characterization of a New Knock-In Mouse Model of Huntington???s Disease: zQ175, PLoS ONE, vol.126, issue.12, pp.49838-23284626, 2012.
DOI : 10.1371/journal.pone.0049838.s007

L. Menalled and D. Brunner, Animal models of Huntington's disease for translation to the clinic: Best practices, Movement Disorders, vol.25, issue.11, pp.1375-1390, 2014.
DOI : 10.1002/ana.410250308

A. Liu, Laser capture microdissection in the tissue biorepository, J Biomol Tech JBT, vol.21, pp.120-125, 2010.

M. Vandewoestyne, K. Goossens, C. Burvenich, V. Soom, A. Peelman et al., Laser capture microdissection: Should an ultraviolet or infrared laser be used?, Analytical Biochemistry, vol.439, issue.2, pp.88-98, 2013.
DOI : 10.1016/j.ab.2013.04.023

URL : https://doi.org/10.1016/j.ab.2013.04.023

I. Kerman, B. Buck, S. Evans, H. Akil, and S. Watson, Combining laser capture microdissection with quantitative real-time PCR: Effects of tissue manipulation on RNA quality and gene expression, Journal of Neuroscience Methods, vol.153, issue.1, pp.71-85, 2006.
DOI : 10.1016/j.jneumeth.2005.10.010

URL : http://www.gene-quantification.de/kerman-rna-integrity-2006.pdf

R. Milcheva, P. Janega, P. Celec, R. Russev, and P. Babál, Alcohol based fixatives provide excellent tissue morphology, protein immunoreactivity and RNA integrity in paraffin embedded tissue specimens, Acta Histochemica, vol.115, issue.3, pp.279-289, 2013.
DOI : 10.1016/j.acthis.2012.08.002

J. Kalabis, G. Wong, M. Vega, M. Natsuizaka, E. Robertson et al., Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture, Nature Protocols, vol.70, issue.2, pp.235-246, 2012.
DOI : 10.1074/jbc.M209148200

URL : http://europepmc.org/articles/pmc3505594?pdf=render

M. Bullock, M. Mellone, K. Pickard, A. Sayan, R. Mitter et al., Molecular Profiling of the Invasive Tumor Microenvironment in a 3-Dimensional Model of Colorectal Cancer Cells and <em>Ex vivo</em> Fibroblasts, Journal of Visualized Experiments, issue.86, 2014.
DOI : 10.3791/51475

A. Le, D. Huang, T. Blick, E. Thompson, and A. Dobrovic, Erratum: An optimised direct lysis method for gene expression studies on low cell numbers, Scientific Reports, vol.7, pp.12859-26242641, 2015.
DOI : 10.1038/srep43075

URL : http://www.nature.com/articles/srep43075.pdf

A. Ståhlberg and M. Bengtsson, Single-cell gene expression profiling using reverse transcription quantitative real-time PCR. Methods San Diego Calif, pp.282-288, 2010.

F. Rubio, C. Bueno, A. Villa, B. Navarro, and A. Martínez-serrano, Genetically Perpetuated Human Neural Stem Cells Engraft and Differentiate into the Adult Mammalian Brain, Molecular and Cellular Neuroscience, vol.16, issue.1, pp.1-13, 2000.
DOI : 10.1006/mcne.2000.0854

E. André, C. Passirani, B. Seijo, A. Sanchez, and C. Montero-menei, Nano and microcarriers to improve stem cell behaviour for neuroregenerative medicine strategies: Application to Huntington's disease, Biomaterials, vol.83, pp.347-362, 2016.
DOI : 10.1016/j.biomaterials.2015.12.008