G. K. Michalopoulos, Hepatostat: Liver regeneration and normal liver tissue maintenance, Hepatology, vol.73, issue.55, pp.1384-1392, 2017.
DOI : 10.1002/1097-0142(19940115)73:2<281::AID-CNCR2820730208>3.0.CO;2-6

G. K. Michalopoulos and Z. Khan, Liver Stem Cells: Experimental Findings and Implications for??Human Liver Disease, Gastroenterology, vol.149, issue.4, pp.876-882, 2015.
DOI : 10.1053/j.gastro.2015.08.004

URL : http://europepmc.org/articles/pmc4584191?pdf=render

N. Fausto and J. S. Campbell, The role of hepatocytes and oval cells in liver regeneration and repopulation, Mechanisms of Development, vol.120, issue.1, pp.117-130, 2003.
DOI : 10.1016/S0925-4773(02)00338-6

J. L. Kopp, M. Grompe, and M. Sander, Stem cells versus plasticity in liver and pancreas regeneration, Nature Cell Biology, vol.128, issue.3, pp.238-245, 2016.
DOI : 10.1016/j.cell.2010.09.016

A. Miyajima, M. Tanaka, and T. Itoh, Stem/Progenitor Cells in Liver Development, Homeostasis, Regeneration, and Reprogramming, Cell Stem Cell, vol.14, issue.5, pp.561-574, 2014.
DOI : 10.1016/j.stem.2014.04.010

URL : https://doi.org/10.1016/j.stem.2014.04.010

A. Dhawan, Clinical human hepatocyte transplantation: Current status and challenges, Liver Transplantation, vol.52, issue.suppl, pp.39-44, 2015.
DOI : 10.1089/ten.tec.2010.0394

URL : http://onlinelibrary.wiley.com/doi/10.1002/lt.24226/pdf

S. J. Forbes, S. Gupta, and A. Dhawan, Cell therapy for liver disease: From liver transplantation to cell factory, Journal of Hepatology, vol.62, issue.1, pp.157-169, 2015.
DOI : 10.1016/j.jhep.2015.02.040

S. N. Bhatia, G. H. Underhill, K. S. Zaret, and I. J. Fox, Cell and tissue engineering for liver disease, Science Translational Medicine, vol.4, issue.4, pp.245-247, 2014.
DOI : 10.1016/j.stem.2009.03.010

C. Guguen-guillouzo and A. Guillouzo, General Review on In Vitro Hepatocyte Models and Their Applications, Methods in molecular biology, vol.640, pp.1-40, 2010.
DOI : 10.1007/978-1-60761-688-7_1

URL : https://hal.archives-ouvertes.fr/hal-00742202

R. E. Schwartz, H. E. Fleming, S. R. Khetani, and S. N. Bhatia, Pluripotent stem cell-derived hepatocyte-like cells, Biotechnology Advances, vol.32, issue.2, pp.504-513, 2014.
DOI : 10.1016/j.biotechadv.2014.01.003

URL : http://dspace.mit.edu/bitstream/1721.1/99767/1/Bhatia_Pluripotent%20stem.pdf

K. Si-tayeb, Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells, Hepatology, vol.26, issue.1, pp.297-305, 2010.
DOI : 10.1038/nbt1361

Z. Hannoun, C. Steichen, N. Dianat, A. Weber, and A. Dubart-kupperschmitt, The potential of induced pluripotent stem cell derived hepatocytes, Journal of Hepatology, vol.65, issue.1, pp.182-199, 2016.
DOI : 10.1016/j.jhep.2016.02.025

C. Du, K. Narayanan, M. F. Leong, and A. C. Wan, Induced pluripotent stem cell-derived hepatocytes and endothelial cells in multi-component hydrogel fibers for liver tissue engineering, Biomaterials, vol.35, issue.23, pp.6006-6014, 2014.
DOI : 10.1016/j.biomaterials.2014.04.011

L. Tolosa, Transplantation of hESC-derived hepatocytes protects mice from liver injury, Stem Cell Research & Therapy, vol.499, issue.7459, p.246, 2015.
DOI : 10.1038/nature12271

URL : https://hal.archives-ouvertes.fr/inserm-01254139

D. C. Hay, Efficient Differentiation of Hepatocytes from Human Embryonic Stem Cells Exhibiting Markers Recapitulating Liver Development In Vivo, Stem Cells, vol.45, issue.4, pp.894-902, 2008.
DOI : 10.1634/stemcells.2007-0718

F. Tasnim, D. Phan, Y. Toh, and H. Yu, Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules, Biomaterials, vol.70, pp.115-125, 2015.
DOI : 10.1016/j.biomaterials.2015.08.002

T. Takebe, Vascularized and functional human liver from an iPSC-derived organ bud transplant, Nature, vol.51, issue.7459, pp.481-484, 2013.
DOI : 10.1073/pnas.1109767108

M. Huch, Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver, Cell, vol.160, issue.1-2, pp.299-312, 2015.
DOI : 10.1016/j.cell.2014.11.050

URL : https://doi.org/10.1016/j.cell.2014.11.050

L. Broutier, Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation, Nature Protocols, vol.476, issue.9, pp.1724-1767, 2016.
DOI : 10.1038/nature10337

K. Rennert, A microfluidically perfused three dimensional human liver model, Biomaterials, vol.71, pp.119-131, 2015.
DOI : 10.1016/j.biomaterials.2015.08.043

K. Schneeberger, Converging biofabrication and organoid technologies: the next frontier in hepatic and intestinal tissue engineering?, Biofabrication, vol.9, issue.1, 2017.
DOI : 10.1088/1758-5090/aa6121

URL : http://iopscience.iop.org/article/10.1088/1758-5090/aa6121/pdf

M. Rezvani, A. A. Grimm, and H. Willenbring, Assessing the therapeutic potential of lab-made hepatocytes, Hepatology, vol.640, issue.1 Suppl, pp.287-294, 2016.
DOI : 10.1007/978-1-60761-688-7_27

URL : http://onlinelibrary.wiley.com/doi/10.1002/hep.28569/pdf

P. Krause, K. Unthan-fechner, I. Probst, and S. Koenig, Cultured Hepatocytes Adopt Progenitor Characteristics and Display Bipotent Capacity to Repopulate the Liver, Cell Transplantation, vol.11, issue.7, pp.805-817, 2014.
DOI : 10.3748/wjg.v11.i39.6176

URL : http://journals.sagepub.com/doi/pdf/10.3727/096368913X664856

Y. Chen, P. P. Wong, L. Sjeklocha, C. J. Steer, and M. B. Sahin, Mature hepatocytes exhibit unexpected plasticity by direct dedifferentiation into liver progenitor cells in culture, Hepatology, vol.31, issue.Suppl 1, pp.563-574, 2012.
DOI : 10.1016/S0168-8278(99)80043-9

URL : http://onlinelibrary.wiley.com/doi/10.1002/hep.24712/pdf

B. D. Tarlow, Bipotential Adult Liver Progenitors Are Derived from Chronically Injured Mature Hepatocytes, Cell Stem Cell, vol.15, issue.5, pp.605-618, 2014.
DOI : 10.1016/j.stem.2014.09.008

URL : https://doi.org/10.1016/j.stem.2014.09.008

D. Yimlamai, Hippo Pathway Activity Influences Liver Cell Fate, Cell, vol.157, issue.6, pp.1324-1338, 2014.
DOI : 10.1016/j.cell.2014.03.060

URL : https://doi.org/10.1016/j.cell.2014.03.060

T. Katsuda, Conversion of Terminally Committed Hepatocytes to Culturable Bipotent Progenitor Cells with Regenerative Capacity, Cell Stem Cell, vol.20, issue.1, pp.41-55, 2017.
DOI : 10.1016/j.stem.2016.10.007

A. P. Kourouklis, K. B. Kaylan, and G. H. Underhill, Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells, Biomaterials, vol.99, pp.82-94, 2016.
DOI : 10.1016/j.biomaterials.2016.05.016

D. Y. No, G. S. Jeong, and S. H. Lee, Immune-protected xenogeneic bioartificial livers with liver-specific microarchitecture and hydrogel-encapsulated cells, Biomaterials, vol.35, issue.32, pp.8983-8991, 2014.
DOI : 10.1016/j.biomaterials.2014.07.009

J. Lu, A New Fluidized Bed Bioreactor Based on Diversion-Type Microcapsule Suspension for Bioartificial Liver Systems, PLOS ONE, vol.33, issue.4, p.147376, 2016.
DOI : 10.1371/journal.pone.0147376.s002

URL : https://doi.org/10.1371/journal.pone.0147376

S. Figaro, Optimizing the fluidized bed bioreactor as an external bioartificial liver, The International Journal of Artificial Organs, vol.40, issue.4, pp.196-203, 2017.
DOI : 10.5301/ijao.5000567

J. Thompson, Extracorporeal cellular therapy (ELAD) in severe alcoholic hepatitis: A multinational, prospective, controlled, randomized trial, Liver Transplantation, vol.51, issue.suppl 1, pp.380-393, 2018.
DOI : 10.1002/hep.23258