D. Rodriguez-abreu, Epidemiology of hematological malignancies, Annals of Oncology, vol.18, issue.Supplement 1, pp.3-8, 2007.
DOI : 10.1093/annonc/mdl443

URL : https://academic.oup.com/annonc/article-pdf/18/suppl_1/i3/6672797/mdl443.pdf

A. Shah, Survival and cure of acute myeloid leukaemia in England, 1971-2006: a population-based study, British Journal of Haematology, vol.342, issue.Suppl 5, pp.509-516, 1971.
DOI : 10.1136/bmj.d3399

URL : http://onlinelibrary.wiley.com/doi/10.1111/bjh.12425/pdf

B. H. Segal, Prevention and Early Treatment of Invasive Fungal Infection in Patients with Cancer and Neutropenia and in Stem Cell Transplant Recipients in the Era of Newer Broad-Spectrum Antifungal Agents and Diagnostic Adjuncts, Clinical Infectious Diseases, vol.39, issue.9, pp.402-409, 2007.
DOI : 10.1086/421953

M. W. Mccarthy and T. J. Walsh, Prophylactic Measures During Induction for Acute Myeloid Leukemia, Current Oncology Reports, vol.57, issue.4, p.18, 2017.
DOI : 10.1093/cid/cit290

W. R. Sperr, Intensive consolidation with G-CSF support: Tolerability, safety, reduced hospitalization, and efficacy in acute myeloid leukemia patients ???60 years, American Journal of Hematology, vol.128, issue.10, pp.567-574, 2017.
DOI : 10.1200/JCO.2000.18.4.780

M. Sant, Survival for haematological malignancies in Europe between 1997 and 2008 by region and age: results of EUROCARE-5, a population-based study, The Lancet Oncology, vol.15, issue.9, pp.931-942, 2014.
DOI : 10.1016/S1470-2045(14)70282-7

D. Pulte, Improvements in survival of adults diagnosed with acute myeloblastic leukemia in the early 21st century, Haematologica, vol.93, issue.4, pp.594-600, 2008.
DOI : 10.3324/haematol.12304

M. A. Sekeres, Time from diagnosis to treatment initiation predicts survival in younger, but not older, acute myeloid leukemia patients, Blood, vol.113, issue.1, pp.28-36, 2009.
DOI : 10.1182/blood-2008-05-157065

URL : http://www.bloodjournal.org/content/bloodjournal/113/1/28.full.pdf

S. Bertoli, Time from diagnosis to intensive chemotherapy initiation does not adversely impact the outcome of patients with acute myeloid leukemia, Blood, vol.121, issue.14, pp.2618-2626, 2013.
DOI : 10.1182/blood-2012-09-454553

URL : http://www.bloodjournal.org/content/bloodjournal/121/14/2618.full.pdf

H. Dombret, International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts, Blood, vol.126, issue.3, pp.291-299, 2015.
DOI : 10.1182/blood-2015-01-621664

URL : http://www.bloodjournal.org/content/bloodjournal/126/3/291.full.pdf

J. W. Yates, Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia, Cancer Chemother. Rep, vol.57, pp.485-488, 1973.

S. M. Luger, How can one optimize induction therapy in AML?, Best Practice & Research Clinical Haematology, vol.30, issue.4, pp.301-305, 2017.
DOI : 10.1016/j.beha.2017.10.001

B. Lowenberg, High-Dose Daunorubicin in Older Patients with Acute Myeloid Leukemia, New England Journal of Medicine, vol.361, issue.13, pp.1235-1248, 2009.
DOI : 10.1056/NEJMoa0901409

C. Gardin, Superior Long-Term Outcome With Idarubicin Compared With High-Dose Daunorubicin in Patients With Acute Myeloid Leukemia Age 50 Years and Older, Journal of Clinical Oncology, vol.31, issue.3, pp.321-327, 2013.
DOI : 10.1200/JCO.2011.40.3642

H. Dohner, Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet, Blood, vol.115, issue.3, pp.453-474, 2010.
DOI : 10.1182/blood-2009-07-235358

H. Dohner, Acute Myeloid Leukemia, New England Journal of Medicine, vol.373, issue.12, pp.1136-52, 2015.
DOI : 10.1056/NEJMra1406184

C. C. Coombs, Acute promyelocytic leukemia: where did we start, where are we now, and the future Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet, Blood Cancer J. Blood, vol.5, issue.113, pp.1875-1891, 2009.

F. Lo-coco, Retinoic Acid and Arsenic Trioxide for Acute Promyelocytic Leukemia, New England Journal of Medicine, vol.369, issue.2, pp.111-121, 2013.
DOI : 10.1056/NEJMoa1300874

A. K. Burnett, Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial, The Lancet Oncology, vol.16, issue.13, pp.1295-1305, 2015.
DOI : 10.1016/S1470-2045(15)00193-X

U. Platzbecker, Improved Outcomes With Retinoic Acid and Arsenic Trioxide Compared With Retinoic Acid and Chemotherapy in Non???High-Risk Acute Promyelocytic Leukemia: Final Results of the Randomized Italian-German APL0406 Trial, Journal of Clinical Oncology, vol.35, issue.6, pp.605-612, 2017.
DOI : 10.1200/JCO.2016.67.1982

S. Nassereddine, The role of mutant IDH1 and IDH2 inhibitors in the treatment of acute myeloid leukemia, Annals of Hematology, vol.133, issue.4, 1983.
DOI : 10.1007/s00401-017-1677-y

R. M. Stone, Midostaurin: its odyssey from discovery to approval for treating acute myeloid leukemia and advanced systemic mastocytosis, Blood Advances, vol.2, issue.4, p.444, 2018.
DOI : 10.1182/bloodadvances.2017011080

URL : http://www.bloodadvances.org/content/2/4/444.full.pdf

R. M. Stone, Mutation, New England Journal of Medicine, vol.377, issue.5, pp.454-464, 2017.
DOI : 10.1056/NEJMoa1614359

E. M. Stein, relapsed or refractory acute myeloid leukemia, Blood, vol.130, issue.6, pp.722-731, 2017.
DOI : 10.1182/blood-2017-04-779405

C. D. Dinardo, Determination of IDH1 mutational burden and clearance via next-generation sequencing in patients with IDH1 mutation-positive hematologic malignancies receiving AG-120, a first-in-class inhibitor of mutant IDH1, Blood, vol.128, p.1070, 2016.

M. Konopleva, Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia, Cancer Discovery, vol.6, issue.10, pp.1106-1117, 2016.
DOI : 10.1158/2159-8290.CD-16-0313

C. D. Dinardo, Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: a non-randomised, open-label, phase 1b study, The Lancet Oncology, vol.19, issue.2, pp.216-228, 2018.
DOI : 10.1016/S1470-2045(18)30010-X

A. Wei, Updated safety and clinical results of phase 1/2 study of Venetoclax plus low-dose cytarabine in treatment-naive acute myeloid leukemia patients aged ?65 years and unfit for standard induction therapy, Haematologica 30, 2017.

A. H. Wei and I. S. Tiong, Midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin, and venetoclax bring new hope to AML, Blood, vol.130, issue.23, pp.2469-2474, 2017.
DOI : 10.1182/blood-2017-08-784066

E. M. Stein and M. S. Tallman, Emerging therapeutic drugs for AML, Blood, vol.127, issue.1, pp.71-78, 2016.
DOI : 10.1182/blood-2015-07-604538

URL : http://www.bloodjournal.org/content/bloodjournal/127/1/71.full.pdf

S. H. Petersdorf, A phase 3 study of gemtuzumab ozogamicin during induction and postconsolidation therapy in younger patients with acute myeloid leukemia, Blood, vol.121, issue.24, pp.4854-4860, 2013.
DOI : 10.1182/blood-2013-01-466706

URL : http://www.bloodjournal.org/content/bloodjournal/121/24/4854.full.pdf

S. Castaigne, Effect of gemtuzumab ozogamicin on survival of adult patients with de-novo acute myeloid leukaemia (ALFA-0701): a randomised, open-label, phase 3 study, The Lancet, vol.379, issue.9825, pp.1508-1524, 2012.
DOI : 10.1016/S0140-6736(12)60485-1

URL : https://hal.archives-ouvertes.fr/hal-01056520

N. Pemmaraju, Results from phase 2 trial ongoing expansion stage of SL-401 in patients with blastic plasmacytoid dendritic cell neoplasm (BPDCN), Blood, vol.128, p.342, 2016.

P. 35-fenaux, Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study, The Lancet Oncology, vol.10, issue.3, pp.223-232, 2009.
DOI : 10.1016/S1470-2045(09)70003-8

H. Kantarjian, Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia, Blood, vol.109, issue.1, pp.52-57, 2007.
DOI : 10.1182/blood-2006-05-021162

H. M. Kantarjian, Multicenter, Randomized, Open-Label, Phase III Trial of Decitabine Versus Patient Choice, With Physician Advice, of Either Supportive Care or Low-Dose Cytarabine for the Treatment of Older Patients With Newly Diagnosed Acute Myeloid Leukemia, Journal of Clinical Oncology, vol.30, issue.21, pp.2670-2677, 2012.
DOI : 10.1200/JCO.2011.38.9429

M. Nieto, The European Medicines Agency Review of Decitabine (Dacogen) for the Treatment of Adult Patients With Acute Myeloid Leukemia: Summary of the Scientific Assessment of the Committee for Medicinal Products for Human Use, The Oncologist, vol.21, issue.6, pp.692-700, 2016.
DOI : 10.1634/theoncologist.2015-0298

D. A. Arber, The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia, Blood, vol.127, issue.20, pp.2391-2405, 2016.
DOI : 10.1182/blood-2016-03-643544

G. Montalban-bravo and G. Garcia-manero, Novel drugs for older patients with acute myeloid leukemia, Leukemia, vol.122, issue.4, pp.760-769, 2015.
DOI : 10.1182/blood-2013-03-491506

C. Saygin and H. E. Carraway, Emerging therapies for acute myeloid leukemia, Journal of Hematology & Oncology, vol.2, issue.5, p.93, 2017.
DOI : 10.1038/bcj.2012.14

L. C. Stansfield and D. A. Pollyea, Midostaurin: A New Oral Agent Targeting FMS-Like Tyrosine Kinase 3-Mutant Acute Myeloid Leukemia, Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, vol.129, issue.Suppl 1, pp.1586-1599, 2017.
DOI : 10.1182/blood-2017-05-782292

A. Burnett, Therapeutic Advances in Acute Myeloid Leukemia, Journal of Clinical Oncology, vol.29, issue.5, pp.487-494, 2011.
DOI : 10.1200/JCO.2010.30.1820

K. Mrozek, Prognostic Significance of the European LeukemiaNet Standardized System for Reporting Cytogenetic and Molecular Alterations in Adults With Acute Myeloid Leukemia, Journal of Clinical Oncology, vol.30, issue.36, pp.4515-4523, 2012.
DOI : 10.1200/JCO.2012.43.4738

E. Arrigoni, ATP-binding cassette transmembrane transporters and their epigenetic control in cancer: an overview, Expert Opinion on Drug Metabolism & Toxicology, vol.12, issue.3, pp.1419-1432, 2016.
DOI : 10.1038/icb.2011.100

M. H. Raaijmakers, ATP-binding-cassette transporters in hematopoietic stem cells and their utility as therapeutical targets in acute and chronic myeloid leukemia, Leukemia, vol.90, issue.10, pp.2094-2102, 2007.
DOI : 10.1097/01.ASN.0000019412.87412.BC

URL : http://www.nature.com/leu/journal/v21/n10/pdf/2404859a.pdf

J. Shi, Cancer nanomedicine: progress, challenges and opportunities, Nature Reviews Cancer, vol.26, issue.8, pp.20-37, 2017.
DOI : 10.1002/adma.201305256

URL : http://europepmc.org/articles/pmc5575742?pdf=render

J. Guo, Patient Derived Therapeutic Efficacy, Molecular Pharmaceutics, vol.14, issue.3, pp.940-952, 2017.
DOI : 10.1021/acs.molpharmaceut.6b01150

A. M. Dorrance, Targeting leukemia stem cells in vivo with antagomiR-126 nanoparticles in acute myeloid leukemia, Leukemia, vol.112, issue.11, pp.2143-53, 2015.
DOI : 10.1172/JCI66005

URL : http://europepmc.org/articles/pmc4633325?pdf=render

F. Danhier, To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine?, Journal of Controlled Release, vol.244, pp.108-121, 2016.
DOI : 10.1016/j.jconrel.2016.11.015

S. Tran, Cancer nanomedicine: a review of recent success in drug delivery, Clinical and Translational Medicine, vol.7, issue.1, p.44, 2017.
DOI : 10.2174/157340711795163866

URL : https://clintransmed.springeropen.com/track/pdf/10.1186/s40169-017-0175-0

P. P. Desai, Overcoming poor oral bioavailability using nanoparticle formulations ??? opportunities and limitations, Drug Discovery Today: Technologies, vol.9, issue.2, pp.87-95, 2012.
DOI : 10.1016/j.ddtec.2011.12.001

M. Morotti, Pharmacokinetic and toxicity considerations for the use of anthracyclines in ovarian cancer treatment, Expert Opinion on Drug Metabolism & Toxicology, vol.29, issue.6, pp.707-720, 2011.
DOI : 10.1200/JCO.2009.25.4037

C. Riganti, Liposome-Encapsulated Doxorubicin Reverses Drug Resistance by Inhibiting P-Glycoprotein in Human Cancer Cells, Molecular Pharmaceutics, vol.8, issue.3, pp.683-700, 2011.
DOI : 10.1021/mp2001389

A. Dicko, Biophysical characterization of a liposomal formulation of cytarabine and daunorubicin. Int, J. Pharm, vol.391, pp.248-259, 2010.

J. E. Lancet, Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML, Blood, vol.123, issue.21, pp.3239-3246, 2014.
DOI : 10.1182/blood-2013-12-540971

H. P. Kim, Liposomal encapsulation of a synergistic molar ratio of cytarabine and daunorubicin enhances selective toxicity for acute myeloid leukemia progenitors as compared to analogous normal hematopoietic cells, Experimental Hematology, vol.39, issue.7, pp.741-750, 2011.
DOI : 10.1016/j.exphem.2011.04.001

J. E. Cortes, Phase II, multicenter, randomized trial of CPX-351 (cytarabine:daunorubicin) liposome injection versus intensive salvage therapy in adults with first relapse AML, Cancer, vol.123, issue.2, pp.234-242, 2015.
DOI : 10.1182/blood-2013-12-540971

URL : http://europepmc.org/articles/pmc5542857?pdf=render

C. Brunetti, CPX-351 in acute myeloid leukemia: can a new formulation maximize the efficacy of old compounds?, Expert Review of Hematology, vol.52, issue.10, pp.1-10
DOI : 10.1007/s11864-017-0456-2

J. E. Lancet, Final results of a phase III randomized trial of CPX-351 versus 7+3 in older patients with newly diagnosed high risk (secondary) AML, J. Clin. Oncol, pp.34-7000, 2016.

L. D. Mayer, Ratiometric dosing of anticancer drug combinations: Controlling drug ratios after systemic administration regulates therapeutic activity in tumor-bearing mice, Molecular Cancer Therapeutics, vol.5, issue.7, pp.1854-1863, 2006.
DOI : 10.1158/1535-7163.MCT-06-0118

URL : http://mct.aacrjournals.org/content/molcanther/5/7/1854.full.pdf

K. B. Tan, Liposomal codelivery of a synergistic combination of bioactive lipids in the treatment of acute myeloid leukemia, Nanomedicine, vol.66, issue.11, pp.1665-1679, 2014.
DOI : 10.2174/138920009790274531

K. B. Tan, In vivo efficacy of a novel liposomal formulation of safingol in the treatment of acute myeloid leukemia, Journal of Controlled Release, vol.160, issue.2, pp.290-298, 2012.
DOI : 10.1016/j.jconrel.2011.11.002

L. Myhren, Efficacy of multi-functional liposomes containing daunorubicin and emetine for treatment of acute myeloid leukaemia, European Journal of Pharmaceutics and Biopharmaceutics, vol.88, issue.1, pp.186-193, 2014.
DOI : 10.1016/j.ejpb.2014.04.002

P. M. Moreno and A. P. Pego, Therapeutic antisense oligonucleotides against cancer: hurdling to the clinic, Frontiers in Chemistry, vol.18, issue.83, p.87, 2014.
DOI : 10.1038/gt.2010.133

URL : https://doi.org/10.3389/fchem.2014.00087

Y. Xin, Nano-based delivery of RNAi in cancer therapy, Molecular Cancer, vol.21, issue.23, p.134, 2017.
DOI : 10.1088/0957-4484/21/23/232001

URL : https://molecular-cancer.biomedcentral.com/track/pdf/10.1186/s12943-017-0683-y?site=molecular-cancer.biomedcentral.com

B. D. Adams, Targeting noncoding RNAs in disease, Journal of Clinical Investigation, vol.127, issue.3, pp.761-771, 2017.
DOI : 10.1172/JCI84424

A. M. Tari, Liposome-incorporated Grb2 antisense oligodeoxynucleotide increases the survival of mice bearing bcr-abl-positive leukemia xenografts, Int. J. Oncol, vol.31, pp.1243-1250, 2007.

K. H. Metzeler, A stem cell-like gene expression signature associates with inferior outcomes and a distinct microRNA expression profile in adults with primary cytogenetically normal acute myeloid leukemia, Leukemia, vol.368, issue.10, pp.2023-2031, 2013.
DOI : 10.1056/NEJMoa1209026

URL : http://europepmc.org/articles/pmc3890747?pdf=render

D. A. Pollyea and C. T. Jordan, Therapeutic targeting of acute myeloid leukemia stem cells, Blood, vol.129, issue.12, pp.1627-1635, 2017.
DOI : 10.1182/blood-2016-10-696039

H. Li, CD33-Targeted Lipid Nanoparticles (aCD33LNs) for Therapeutic Delivery of GTI-2040 to Acute Myelogenous Leukemia, Molecular Pharmaceutics, vol.12, issue.6, pp.2010-2018, 2015.
DOI : 10.1021/mp5008212

URL : http://europepmc.org/articles/pmc4962870?pdf=render

R. B. Klisovic, Phase I study of GTI-2040, a ribonucleotide reductase antisense, with high dose cytarabine in patients with relapsed/refractory acute myeloid leukemia, Leukemia & Lymphoma, vol.8, issue.1, pp.1332-1336, 2014.
DOI : 10.1007/s11095-009-9863-9

D. Bobo, Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date, Pharmaceutical Research, vol.6, issue.6, pp.2373-2387, 2016.
DOI : 10.1016/j.nantod.2011.10.001

S. Ashton, Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo, Science Translational Medicine, vol.67, issue.325, pp.325-342, 2016.
DOI : 10.1007/s005800070016

URL : http://hdl.handle.net/10044/1/37595

N. Floc-'h, Optimizing Therapeutic Effect of Aurora B Inhibition in Acute Myeloid Leukemia with AZD2811 Nanoparticles, Molecular Cancer Therapeutics, vol.16, issue.6, pp.1031-1040, 2017.
DOI : 10.1158/1535-7163.MCT-16-0580

A. M. Simon, Poly (D,L-lactic-co-glycolide) Nanoparticles for the Improved Therapeutic Efficacy of All-trans-retinoic Acid: A Study of Acute Myeloid Leukemia (AML) Cell Differentiation In Vitro, Medicinal Chemistry, vol.8, issue.5, pp.805-810, 2012.
DOI : 10.2174/157340612802084333

B. Zhu, Novel transferrin modified and doxorubicin loaded Pluronic 85/lipid-polymeric nanoparticles for the treatment of leukemia: In vitro and in vivo therapeutic effect evaluation, Biomedicine & Pharmacotherapy, vol.86, pp.547-554, 2017.
DOI : 10.1016/j.biopha.2016.11.121

H. Gul-uludag, Polymeric nanoparticle-mediated silencing of CD44 receptor in CD34+ acute myeloid leukemia cells, Leukemia Research, vol.38, issue.11, pp.1299-1308, 2014.
DOI : 10.1016/j.leukres.2014.08.008

S. Legras, A strong expression of CD44-6v correlates with shorter survival of patients with acute myeloid leukemia, Blood, vol.91, pp.3401-3413, 1998.

B. Landry, Effective non-viral delivery of siRNA to acute myeloid leukemia cells with lipid-substituted polyethylenimines CD44, a therapeutic target for metastasising tumours, PLoS ONE Eur. J. Cancer, vol.7, issue.46, pp.1271-1278, 2010.
DOI : 10.1371/journal.pone.0044197

URL : https://doi.org/10.1371/journal.pone.0044197

Y. Zhang, Polymeric Micelles: Nanocarriers for Cancer-Targeted Drug Delivery, AAPS PharmSciTech, vol.15, issue.4, pp.862-871, 2014.
DOI : 10.1208/s12249-014-0113-z

URL : http://europepmc.org/articles/pmc4113619?pdf=render

C. Wang, Pharmacokinetics of Polymeric Micelles for Cancer Treatment, Current Drug Metabolism, vol.14, issue.8, pp.900-909, 2013.
DOI : 10.2174/138920021131400112

E. Bernabeu, Paclitaxel: What has been done and the challenges remain ahead, International Journal of Pharmaceutics, vol.526, issue.1-2, pp.474-495, 2017.
DOI : 10.1016/j.ijpharm.2017.05.016

J. Varshosaz, Synthesis and Characterization of Folate-Targeted Dextran/Retinoic Acid Micelles for Doxorubicin Delivery in Acute Leukemia, BioMed Research International, vol.24, issue.3, p.525684, 2014.
DOI : 10.1016/S0168-3659(00)00256-X

R. R. Wakaskar, General overview of lipid???polymer hybrid nanoparticles, dendrimers, micelles, liposomes, spongosomes and cubosomes, Journal of Drug Targeting, vol.9, issue.4, pp.1-8, 2017.
DOI : 10.4172/2157-7439.1000433

E. Abbasi, Dendrimers: synthesis, applications, and properties, Nanoscale Research Letters, vol.9, issue.1, p.247, 2014.
DOI : 10.1186/1556-276X-9-247

URL : https://nanoscalereslett.springeropen.com/track/pdf/10.1186/1556-276X-9-247?site=nanoscalereslett.springeropen.com

A. Szulc, Sugar-modified poly(propylene imine) dendrimers as drug delivery agents for cytarabine to overcome drug resistance, International Journal of Pharmaceutics, vol.513, issue.1-2, pp.572-583, 2016.
DOI : 10.1016/j.ijpharm.2016.09.063

A. Szulc, Maltose modified poly(propylene imine) dendrimers as potential carriers of nucleoside analog 5???-triphosphates., International Journal of Pharmaceutics, vol.495, issue.2, pp.940-947, 2015.
DOI : 10.1016/j.ijpharm.2015.09.065

B. Saliou, Development and in vitro evaluation of a novel lipid nanocapsule formulation of etoposide, European Journal of Pharmaceutical Sciences, vol.50, issue.2, pp.172-180, 2013.
DOI : 10.1016/j.ejps.2013.06.013

B. Heurtault, A novel phase inversion-based process for the preparation of lipid nanocarriers, Pharmaceutical Research, vol.19, issue.6, pp.875-880, 2002.
DOI : 10.1023/A:1016121319668

L. Battaglia and M. Gallarate, Lipid nanoparticles: state of the art, new preparation methods and challenges in drug delivery, Expert Opinion on Drug Delivery, vol.53, issue.5, pp.497-508, 2012.
DOI : 10.1517/17425240903362410

N. T. Huynh, Lipid nanocapsules: A new platform for nanomedicine, International Journal of Pharmaceutics, vol.379, issue.2, pp.201-209, 2009.
DOI : 10.1016/j.ijpharm.2009.04.026

E. Moysan, An innovative hydrogel of gemcitabine-loaded lipid nanocapsules: when the drug is a key player of the nanomedicine structure, Soft Matter, vol.63, issue.10???11, pp.1767-1777, 2014.
DOI : 10.1016/j.addr.2011.05.017

E. Roger, Development and characterization of a novel lipid nanocapsule formulation of Sn38 for oral administration, European Journal of Pharmaceutics and Biopharmaceutics, vol.79, issue.1, pp.181-188, 2011.
DOI : 10.1016/j.ejpb.2011.01.021

M. B. Antonow, Liquid formulation containing doxorubicin-loaded lipid-core nanocapsules: Cytotoxicity in human breast cancer cell line and in vitro uptake mechanism, Materials Science and Engineering: C, vol.76, pp.374-382, 2017.
DOI : 10.1016/j.msec.2017.03.099

S. C. Steiniger, Chemotherapy of glioblastoma in rats using doxorubicin-loaded nanoparticles, International Journal of Cancer, vol.74, issue.5, pp.759-767, 2004.
DOI : 10.1038/bjc.1996.336

URL : http://onlinelibrary.wiley.com/doi/10.1002/ijc.20048/pdf

F. Hartmann, Cytosine Arabinoside, Idarubicin and Divided Dose Etoposide for the Treatment of Acute Myeloid Leukemia in Elderly Patients, Leukemia & Lymphoma, vol.89, issue.1, pp.347-355, 2001.
DOI : 10.1056/NEJM199410063311402

A. Horikoshi, The value of oral cytarabine ocfosfate and etoposide in the treatment of refractory and elderly AML patients, International Journal of Hematology, vol.18, issue.2, pp.118-125, 2008.
DOI : 10.1038/sj.leu.2403528

A. Khajavinia, Targeting etoposide to acute myelogenous leukaemia cells using nanostructured lipid carriers coated with transferrin, Nanotechnology, vol.23, issue.40, p.405101, 2012.
DOI : 10.1088/0957-4484/23/40/405101

E. L. Silva, Retinoic Acid Loaded in Cholesteryl Butyrate Solid Lipid Nanoparticles, Journal of Nanoscience and Nanotechnology, vol.16, issue.2, pp.1291-1300, 2016.
DOI : 10.1166/jnn.2016.11677

G. A. Castro, Formation of ion pairing as an alternative to improve encapsulation and stability and to reduce skin irritation of retinoic acid loaded in solid lipid nanoparticles, International Journal of Pharmaceutics, vol.381, issue.1, pp.77-83, 2009.
DOI : 10.1016/j.ijpharm.2009.07.025

M. Sabzichi, Fabrication of all- trans -retinoic acid-loaded biocompatible precirol: A strategy for escaping dose-dependent side effects of doxorubicin, Colloids and Surfaces B: Biointerfaces, vol.159, pp.620-628, 2017.
DOI : 10.1016/j.colsurfb.2017.08.030

A. Chinsriwongkul, Nanostructured Lipid Carriers (NLC) for Parenteral Delivery of an Anticancer Drug, AAPS PharmSciTech, vol.13, issue.1, pp.150-158, 2012.
DOI : 10.1208/s12249-011-9733-8

URL : http://europepmc.org/articles/pmc3299450?pdf=render

A. F. Ourique, Lipid-Core Nanocapsules as a Nanomedicine for Parenteral Administration of Tretinoin: Development and <I>In Vitro</I> Antitumor Activity on Human Myeloid Leukaemia Cells, Journal of Biomedical Nanotechnology, vol.6, issue.3, pp.214-223, 2010.
DOI : 10.1166/jbn.2010.1120

D. Perrotti and P. Neviani, Protein phosphatase 2A: a target for anticancer therapy, The Lancet Oncology, vol.14, issue.6, pp.229-238, 2013.
DOI : 10.1016/S1470-2045(12)70558-2

URL : http://europepmc.org/articles/pmc3913484?pdf=render

K. G. Roberts, Essential Requirement for PP2A Inhibition by the Oncogenic Receptor c-KIT Suggests PP2A Reactivation as a Strategy to Treat c-KIT+ Cancers, Cancer Research, vol.70, issue.13, pp.5438-5447, 2010.
DOI : 10.1158/0008-5472.CAN-09-2544

URL : http://cancerres.aacrjournals.org/content/canres/70/13/5438.full.pdf

A. K. Enjeti, A systematic evaluation of the safety and toxicity of fingolimod for its potential use in the treatment of acute myeloid leukaemia, Anti-Cancer Drugs, vol.27, issue.6, pp.560-568, 2016.
DOI : 10.1097/CAD.0000000000000358

E. Mendoza and A. , Lipid Nanosystems Enhance the Bioavailability and the Therapeutic Efficacy of FTY720 in Acute Myeloid Leukemia, Journal of Biomedical Nanotechnology, vol.11, issue.4, pp.691-701, 2015.
DOI : 10.1166/jbn.2015.1944

S. Mazzaferro, Oral delivery of anticancer drugs I: general considerations, Drug Discovery Today, vol.18, issue.1-2, pp.25-34, 2013.
DOI : 10.1016/j.drudis.2012.08.004

G. Garcia-manero, Phase I Study of Oral Azacitidine in Myelodysplastic Syndromes, Chronic Myelomonocytic Leukemia, and Acute Myeloid Leukemia, Journal of Clinical Oncology, vol.29, issue.18, pp.2521-2527, 2011.
DOI : 10.1200/JCO.2010.34.4226

URL : http://europepmc.org/articles/pmc3675699?pdf=render

Y. R. Neupane, gut permeation studies, Nanotechnology, vol.24, issue.41, p.415102, 2013.
DOI : 10.1088/0957-4484/24/41/415102

Y. R. Neupane, Lipid based nanocarrier system for the potential oral delivery of decitabine: Formulation design, characterization, ex vivo, and in vivo assessment, International Journal of Pharmaceutics, vol.477, issue.1-2, pp.601-612, 2014.
DOI : 10.1016/j.ijpharm.2014.11.001

T. Briot, Development and in vitro evaluations of new decitabine nanocarriers for the treatment of acute myeloid leukemia, International Journal of Nanomedicine, vol.12, pp.8427-8442, 2017.
DOI : 10.2147/IJN.S147659

URL : https://hal.archives-ouvertes.fr/inserm-01668530

G. Garcia-manero, Successful emulation of IV decitabine pharmacokinetics with an oral fixed-dose combination of the oral cytidine deaminase inhibitor (CDAi) E7727 with oral decitabine, in subjects with myelodysplastic syndromes (MDS): final data of phase 1 study, Am. Soc. Hematol. XX, p.YYY?ZZZ, 2016.

K. Li, Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics, Drug Discovery Today, vol.22, issue.9, pp.1421-1429, 2017.
DOI : 10.1016/j.drudis.2017.04.008

H. Sharma, Metal nanoparticles: a theranostic nanotool against cancer, Drug Discovery Today, vol.20, issue.9, pp.1143-1151, 2015.
DOI : 10.1016/j.drudis.2015.05.009

N. Shahabadi, Improving antiproliferative effect of the anticancer drug cytarabine on human promyelocytic leukemia cells by coating on Fe 3 O 4 @SiO 2 nanoparticles, Colloids and Surfaces B: Biointerfaces, vol.141, pp.213-222, 2016.
DOI : 10.1016/j.colsurfb.2016.01.054

V. J. Venditto and F. C. Szoka, Cancer nanomedicines: So many papers and so few drugs!, Advanced Drug Delivery Reviews, vol.65, issue.1, pp.80-88
DOI : 10.1016/j.addr.2012.09.038

URL : http://europepmc.org/articles/pmc3565003?pdf=render

H. Malhaire and F. Lagarce, Is the translational approach becoming a reality in nanomedicine? Eur, J. Nanomedicine, vol.7, pp.79-83, 2015.
DOI : 10.1515/ejnm-2014-0045