J. Cross, H. Lee, A. Westelinck, J. Nelson, C. Grudzinskas et al., Postmarketing drug dosage changes of 499 FDA-approved new molecular entities, 1980-1999, Pharmacoepidemiology and Drug Safety, vol.8, issue.6, pp.439-485, 1980.
DOI : 10.1177/009286150003400101

L. Sacks, H. Shamsuddin, Y. Yasinskaya, K. Bouri, M. Lanthier et al., Scientific and regulatory reasons for delay and denial of FDA approval of initial applications for new drugs, pp.378-84, 2000.

F. Musuamba, E. Manolis, N. Holford, S. Cheung, L. Friberg et al., Advanced methods for dose and regimen finding during drug development: summary of the EMA/EFPIA workshop on dose finding CPT Pharmacomet Syst Pharmacol, pp.418-447, 2014.
DOI : 10.1002/psp4.12196

URL : http://onlinelibrary.wiley.com/doi/10.1002/psp4.12196/pdf

B. Bornkamp, F. Bretz, A. Dmitrienko, G. Enas, B. Gaydos et al., Innovative Approaches for Designing and Analyzing Adaptive Dose-Ranging Trials, Journal of Biopharmaceutical Statistics, vol.40, issue.6, pp.965-95, 2007.
DOI : 10.2307/2530666

K. Karlsson, C. Vong, M. Bergstrand, E. Jonsson, and M. Karlsson, Comparisons of analysis methods for proof-of-concept trials. CPT Pharmacomet Syst Pharmacol, p.23, 2013.

F. Bretz, J. Pinheiro, and M. Branson, Combining Multiple Comparisons and Modeling Techniques in Dose-Response Studies, Biometrics, vol.99, issue.3, pp.738-786, 2005.
DOI : 10.1016/S0378-3758(01)00077-5

URL : http://www.meduniwien.ac.at/wbs/2006_13_Maerz_Bretz.pdf

J. Pinheiro, B. Bornkamp, E. Glimm, and F. Bretz, Model-based dose finding under model uncertainty using general parametric models, Statistics in Medicine, vol.44, issue.7, pp.1646-61, 2014.
DOI : 10.1002/1521-4036(200201)44:1<101::AID-BIMJ101>3.0.CO;2-H

URL : http://arxiv.org/pdf/1305.0889

S. Buckland, K. Burnham, and N. Augustin, Model Selection: An Integral Part of Inference, Biometrics, vol.53, issue.2, pp.603-621, 1997.
DOI : 10.2307/2533961

B. Sébastien, D. Hoffman, C. Rigaux, F. Pellissier, and J. Msihid, Model averaging inconcentration-QT analyses, Pharmaceutical Statistics, vol.89, issue.4, pp.450-458, 2016.
DOI : 10.1080/01621459.1994.10476871

A. Dosne, M. Bergstrand, M. Karlsson, R. D. Heimann, and G. , Model averaging for robust assessment of QT prolongation by concentration-response analysis, Statistics in Medicine, vol.98, issue.24, pp.3844-57, 2017.
DOI : 10.1198/016214503000000828

J. Bertrand, E. Comets, and F. Mentre, Comparison of Model-Based Tests and Selection Strategies to Detect Genetic Polymorphisms Influencing Pharmacokinetic Parameters, Journal of Biopharmaceutical Statistics, vol.5, issue.6, pp.1084-102, 2008.
DOI : 10.1111/j.1525-1438.2006.00593.x

URL : https://hal.archives-ouvertes.fr/inserm-00339183

H. Bozdogan, Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions, Psychometrika, vol.10, issue.2, pp.345-70, 1987.
DOI : 10.1007/978-94-009-4828-0

D. Anderson and K. Burnham, Understanding information criteria for selection among capturerecapture or ring recovery models. Bird Study, pp.14-21, 1999.
DOI : 10.1080/00063659909477227

K. Schorning, B. Bornkamp, F. Bretz, and H. Dette, Model selection versus model averaging in dose finding studies, Statistics in Medicine, vol.5, issue.2B, pp.4021-4061, 2016.
DOI : 10.1214/10-AOAS445

URL : http://arxiv.org/pdf/1508.00281

D. Bates, Nonlinear mixed effects models for longitudinal data Statistics Reference Online [Internet] Available from, 2014.

N. Holford, Clinical pharmacology = disease progression + drug action, British Journal of Clinical Pharmacology, vol.2, issue.Suppl. 1, pp.18-27, 2015.
DOI : 10.1111/j.1365-2125.2012.04208.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/bcp.12170/pdf

S. Buatois, S. Retout, N. Frey, and S. Ueckert, Item Response Theory as an Efficient Tool to Describe a Heterogeneous Clinical Rating Scale in De Novo Idiopathic Parkinson???s Disease Patients, Pharmaceutical Research, vol.74, issue.2, pp.2109-2127, 2017.
DOI : 10.1111/j.1365-2125.2012.04208.x

URL : https://hal.archives-ouvertes.fr/inserm-01563224

Y. Aoki, D. Röshammar, B. Hamrén, and A. Hooker, Model selection and averaging of nonlinear mixedeffect models for robust phase III dose selection, J Pharmacokinet Pharmacodyn, pp.1-17, 2017.
DOI : 10.1007/s10928-017-9550-0

URL : https://link.springer.com/content/pdf/10.1007%2Fs10928-017-9550-0.pdf

M. Delattre, M. Lavielle, and M. Poursat, A note on BIC in mixed-effects models, Electronic Journal of Statistics, vol.8, issue.1, pp.456-475, 2014.
DOI : 10.1214/14-EJS890

URL : https://hal.archives-ouvertes.fr/hal-00991708

G. Claeskens and N. Hjort, Model Selection and Model Averaging. 1 edition. Cambridge, 2008.

P. Rosenfeld, D. Brown, J. Heier, D. Boyer, P. Kaiser et al., Ranibizumab for Neovascular Age-Related Macular Degeneration, New England Journal of Medicine, vol.355, issue.14, pp.1419-1450, 2006.
DOI : 10.1056/NEJMoa054481

N. Thomas, K. Sweeney, and V. Somayaji, Meta-Analysis of Clinical Dose???Response in a Large Drug Development Portfolio, Statistics in Biopharmaceutical Research, vol.30, issue.4, pp.302-319, 2014.
DOI : 10.1161/01.CIR.54.6.885

S. Kullback, Information theory and statistics. New edition edition, 1997.

D. Mackay, Information theory, inference and learning algorithms. 1 edition, 2003.

S. Beal, L. Sheiner, A. Boeckmann, and R. Bauer, NONMEM User's Guides, Icon Development Solutions, 1989.

N. Thomas, Model Applied to Sparse Dose-Response Designs, Journal of Biopharmaceutical Statistics, vol.2, issue.5, pp.657-77, 2006.
DOI : 10.1016/S0378-3758(01)00077-5

V. Dragalin, F. Hsuan, and S. Padmanabhan, Model, Journal of Biopharmaceutical Statistics, vol.35, issue.6, pp.1051-70, 2007.
DOI : 10.1080/10543400600860469