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Abstract 

In drug development, pharmacometric approaches consist in identifying via a model selection 

(MS) process the model structure that best describes the data. However, making predictions 

using a selected model ignores model structure uncertainty, which could impair predictive 

performance. To overcome this drawback, model averaging (MA)takes into account the 

uncertainty across a set of candidate models by weighting them as a function of an 

information criterion. Our primary objective was to use clinical trial simulations (CTSs) to 

compare model selection (MS) with model averaging (MA) in dose-finding clinical trials, 

based on the AIC information criterion. A secondary aim of this analysis was to challenge the 

use of AIC by comparing MA and MS using 5 different information criteria. CTSs were based 

on a nonlinear mixed effects model characterizing the time course of visual acuity in wet age-

related macular degeneration patients. Predictive performances of the modeling approaches 

were evaluated using 3 performance criteria focused on the main objectives of a phase II 

clinical trial. In this framework, MA adequately described the data and showed better 

predictive performance than MS, increasing the likelihood of accurately characterizing the 
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dose-response relationship and defining the minimum effective dose. Moreover, regardless of 

the modeling approach, AIC was associated with the best predictive performances. 

Introduction 

Finding the right dose remains a critical step in clinical drug development (1). Selecting too 

high a dose increases the risk of toxicity, while too low a dose may reduce the treatment 

efficacy. Uncertainty concerning the selected dose can lead to unsuccessful trials and delays 

in regulatory approval. Between 2000 and 2012, one of the greatest causes of failure of phase 

3 submissions was uncertainty related to dose selection (2).  

 

To tackle this challenge, 150 delegates from industry, academia and regulatory bodies 

representing different scientific disciplines attended a dose finding workshop under the 

leadership of the European Medicines Agency (EMA) (3).  

Among the different discussions, the workshop reiterated the following statement of the 

International Council for Harmonisation of Technical Requirements for Pharmaceuticals for 

Human Use (ICH) E4 guidance (4): “dose finding should rely  on model-based estimation 

rather than hypothesis testing via pairwise comparisons”. Hence, there is , an increased 

interest in innovative approaches to accurately characterization of the dose-response 

relationship (5). Approaches based on models, such as nonlinear models, provide a functional 

relationship between dose and response. Compared to a pairwise analysis, nonlinear models 

allow analysis of all the data simultaneously and interpolation between doses (6).  

Based on recommendations from health authorities, the model should be specified prior to 

data analysis.. However, before phase 2, little is known regarding the dose response 

relationship. The Multiple Comparison Procedure – Modeling (MCP-MOD) method (7,8) 

addressed this issue by using a predefined set of candidate models for the description of the 

dose response relationship. Once the evidence of a drug effect is established at the MCP step 
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using multiple contrast tests, a MOD step is used to estimate the dose to be brought into the 

confirmatory phase. 

Traditionally, model based approaches require selection of the model that best describes the 

data according to an information criterion. The model is then used to predict the dose 

response relationship. Nonetheless, making predictions with a selected model (MS)  ignores 

uncertainty that could impair predictive performance, as recognized in the literature (9). 

More recently, the method of model averaging (MA) has been proposed to take model 

uncertainty into account (10,11). MA associates a weight with each of the candidate models 

based on a chosen information criterion. Of information criteria proposed (12–14), most 

depend on the log-likelihood      as well as a penalty term (pen) which varies depending on 

the selected criterion. MA predictions are then obtained from a weighted mixture of the 

candidate model predictions. This method could be applied alone or in combination with 

MCP-MOD. MA has recently been shown to provide consistently better predictive 

performances than MS in the context of nonlinear models for dose finding studies (15). 

Compared to nonlinear models (NLMs), nonlinear mixed effects models (NLMEMs) allow 

longitudinal analysis of data and so leverage all the information provided by clinical trials 

(16). This feature is particularly meaningful in clinical trials with long-term end points where 

the disease status of a given patient evolves significantly over time. Repeated measures are 

used to identify the natural history of the disease, using a disease progression model, as well 

as the potential impact of a drug, distinguishing disease modification from symptomatic 

treatment effects (17,18).  

MA was recently applied to NLMEMs by Aoki et al for selection of the minimum effective 

dose in the context of an asthma drug. This work shows that MA and bootstrap MS have 

better predictive properties than MS (19),  (19), 
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The present article extends this work both in terms of results and methodology, by using  a 

different simulation case study. As part of these extensions, we investigated different study 

designs and performance criteria. Moreover, the candidate models include a disease 

progression as well as inter-individual variability in the dose response relationships.  

The focus of our study was comparison, through clinical trial simulations (CTS), of the 

predictive performances of MA and MS on a predefined set of NLMEMs with the same 

disease progression model and different dose-effect relationships. Knowing that there is no 

real guidance on which information criterion is preferable, our secondary objective was to 

evaluate 5 criteria and identify the best one for MA and MS. First, the predictive 

performances of the analysis methods were compared in 3 simulation scenarios using the 

Akaike information criterion (AIC). Predictive performances were evaluated using 3 

performance criteria focusing on the main objectives of a phase 2 clinical trial, i.e. the ability 

to correctly identify (i) a clinically relevant effect, (ii) the target dose and (iii) the dose-

response relationship. Second, using the last performance criterion, the predictive 

performances of MS and MA were evaluated using 5 different information criteria. 

Materials and methods 

Model-based data analysis 

Nonlinear mixed effects models 

Let      be the observation of subject         at time         and   the vector of all 

observations of size     .  

This work considered a set of candidate NLMEMs called         of the form:  

                             

Where,    is the dose administered to the subject  ,      the vector of individual parameters 

and        the residual error. The vector of individual parameters depends on fixed effects    

and random effects             . For the sake of simplicity, a diagonal variance covariance 
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matrix    was assumed. Parameters that include a random effect were considered to have 

either a log-normal               
 or a normal                distribution. Residual 

errors were assumed to be independent and normally distributed             
 
  . 

Finally, for each model  ,     is defined as the vector of the population parameters of size 

  , i.e.    ,    and   
 . 

Modeling approaches 

Starting from a set of candidate models, different modeling approaches can be used to 

estimate the dose-response relationship. One can: (a) use a given candidate model regardless 

of its properties to describe the data; (b) select the candidate model that describe the data the 

best using MS; or (c) compute a weighted mixture of the candidate models using MA. When 

focusing on MS and MA, both approaches rely on an information criterion  . 

Information criteria 

Different information criteria can be used in NLMEM (13,14). Here, the list of investigated 

information criteria is derived from the work of Bertrand et al (12) and consists of the Akaike 

information criterion (AIC), the consistent Akaike information criterion (CAIC) and the 

Bayesian information criterion (BIC). All investigated criteria balance the log-likelihood       

with a penalty term (   ) which varies depending on the selected criterion I: 

                        

The penalty terms are based on the parsimony principle, for similar information, 

the simplest of competing models is to be preferred. Penalty terms depend upon the number of 

estimated parameters as well as the sample size for BIC and CAIC. The definition of sample 

size, however, is not straightforward in mixed effect models and refers either to the number of 

subjects or to the total number of observations (20) leading to 5 information criteria: AIC, 

BICN, BICntot, CAICN and CAICntot.The penalty terms are defined as: 
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Model selection: 

The best model (    ) was defined as the one with the lowest Im value among the M 

candidate models.  

Model averaging estimator: 

MA corresponds to a mixture of the M candidate models weighted by their Im values. Weights 

     were calculated as (9,21):  

   
 
    
 

  
     

  
    

 

Where,  

            
 

    is used instead of    to avoid numerical problems when calculating the exponential of 

  . 

Simulation & Estimation  

Clinical study: 

The design is inspired by a study of a monoclonal antibody indicated in the treatment of wet 

age related macular degeneration (wet-AMD) (22). Wet-AMD, is a chronic eye disease 

associated with abnormal blood vessels that grow underneath the retina, damage the macula 

and may result in blurred vision or loss of vision in the center of the visual field. The 

treatment reduces vessel leakiness and improves visual acuity (VA) by neutralizing the 

vascular endothelial growth factor (VEGF) in the retina. 

https://en.wikipedia.org/wiki/Blurred_vision
https://en.wikipedia.org/wiki/Vision_loss
https://en.wikipedia.org/wiki/Visual_field
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CTS were performed in the scenario of a hypothetical phase 2 trial inspired by the clinical 

development of a monoclonal antibody indicated in the treatment of wet-AMD. The trial 

duration was set to 24 months with a total of 26 VA measurements per patient (at baseline, 

day 7 and every 28 days). The study size was set to 300 patients who were equally 

randomized to receive either the placebo or 1 out of 3 doses.  

Model: 

In wet-AMD, disease progression and treatment effect are assessed using a VA test based on 

the early treatment diabetic retinopathy study (ETDRS) chart (22) which contains 14 lines (70 

letters). The ETDRS chart is used to measure the number of letters successfully read by the 

patient at a given visit. The simulation model describes the time course of VA in wet-AMD 

patients, with or without anti-VEGF treatment (Diack C. et al, PAGE 2015, 

https://www.page-meeting.org/?abstract=3569). 

                                  
        
       

            

    is the visual acuity at baseline and in the absence of treatment. VA exponentially 

decreases over time    in untreated patients, reaching an asymptote            
 
  at a rate 

   . Based on    , one can derive the average time to steady state (               which 

equals approximately 24 months and corresponds to the end of trial. In line with the literature, 

the model mimic a mixture of both a disease modifying and symptomatic effect. The dose 

response relationship was assumed to be an Emax function, where,       represents the 

maximum number of letters that an individual can gain and      the dose at which 50% of 

the maximal effect is achieved. For a very high dose and at steady state, the predicted visual 

acuity is                    . 

Interindividual variability was assumed for the parameters    ,    ,   and emax. The emax 

parameter follows a normal distribution and a log normal distribution was assumed for the 
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remaining ones. The parameter values (  ) used to simulate the datasets are reported in Table 

I. 

Simulation scenarios 

Clinical trial simulations were used to compare the predictive performances of MA and MS in 

different scenarios. In total, three simulation scenarios were investigated assuming (I) an 

informative design with doses around the ED50*, (II) only small doses that lay in the linear 

part of the dose-response curve, or (III) no drug effect (Figure 1):  

- In scenario I, MA and MS are compared using a hypothetical informative design 

where emax equals 30 letters  and doses are equal to  0, 150, 300 and 500 μg. 

- In scenario II, the investigated doses are in the linear part of the dose response curve 

i.e. 0, 25, 50 and 100 μg; therefore little is known regarding the maximal effect of the 

drug (30 letters).  

- In scenario III, the investigated doses are 0, 25, 50 and 100 μg with a flat dose 

response relationship (i.e. no drug effect). 

Estimation:  

For each scenario, S datasets were simulated and for each simulated dataset s, parameters 

        of the M candidate models were estimated by maximizing the log likelihood using the 

Monte Carlo importance sampling expectation maximization method (IMP). 

Candidate models:  

The candidate models resulted from the combination of the disease progression model with 

one of four dose effect relationships (8,15,19,23): 

- Emax,      
       

      
 (1) 

- Linear,           (2) 

- Log-linear,                   (3) 
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- Sigmoid,      
       

 

    
    

 (4) 

Where,    represents the slope of the Linear and Log-linear equations and   is the Hill 

coefficient of the sigmoidal equation. The hypothesis of a flat dose response relationship was 

included in each candidate model by assuming a normal distribution for the       and     

parameters.   

Model predictions 

In wet-AMD, the primary endpoint is the individual visual acuity change from baseline 

(     to the end of trial (EOT). Therefore, Monte Carlo simulations were used to compute 

the distribution of the individuals     at 24 months for each dose. 

These distributions depend upon the scenario, the dose, the trial replicate, the modeling 

approach and the information criterion. For the sake of clarity, the scenario, trial replicate and 

information criterion subscripts were ignored in the following equations. 

The true probability density of the change from baseline at a given dose d,          ,  is 

calculated as follows: 

                                            

In total           modeling approaches were compared. From     to 4, the distribution 

corresponds to the probability density function of the corresponding candidate model m. 

Approach 5 corresponds to model selection and approach 6 to model averaging. 

The estimated probability density changes from baseline at a given dose d for each of the 

candidate models,          , were calculated as follows: 

                                              

If    ,           corresponds to the estimated probability density of the best candidate 

model      
       ; and if    ,           corresponds to the estimated probability 

density of the mixture of the   candidate models weighted by   : 
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Evaluation of predictive performance 

Using AIC as the information criterion, predictive performances of the         modeling 

approaches were evaluated using three criteria based on the clinically relevant drug effect 

(CRE), the minimum effective dose (MED) and the Kullback–Leibler divergence (   ). 

Secondly, MS and MA     values were compared using 5 different information criteria. In 

line with the model prediction section, the scenario, trial replicate and information criterion 

subscripts were ignored in the following equations. 

 

Clinically relevant drug effect  

The clinically relevant drug effect (CRE)  was defined as an increase of the median     at 

EOT of at least 15 letters at dose 500     compared to patients treated by placebo, such as: 

            
                                              

                                              
  

Replicates were then used to calculate the percentage of trials indicating a CRE for each 

simulation scenario and modeling approach. 

Minimum effective dose 

The MED corresponds to the minimum dose at which a CRE is achieved. Derived from the 

probability density, one can predict the true and estimated MED, respectively: 

                                                     

                                                       

Where,   range from 0 to        in steps of 50   . For a given trial replicate, if none of the 

simulated doses led to a CRE, then      was capped at       . 
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In the first and second simulation scenarios, the relative root mean squared error (RRMSE) 

and the relative bias between the true and estimated MED were used to compare the precision 

and accuracy of the different approaches.  

Kullback–Leibler divergence 

The Kullback–Leibler divergence (   ) or relative entropy represents the divergence between 

two probability distributions (24). The relative entropy satisfies Gibbs’ inequality, 

     
      . Thus, a Kullback–Leibler divergence between two identical distributions 

equals zero. 

 In this study, the Kullback–Leibler divergence between the true and the estimated probability 

density was calculated according to (25): 

    
                        

         

         
 

The           represents here the divergence over the doses   ,         , in 

                   : 

          
            

 

   

     

The distribution of the           values was then used to compare the predictive 

performances of the modeling approaches. 

Technical implementation 

In each scenario,       trial replicates were simulated. For each simulated dataset and each 

candidate model,       were estimated in NONMEM7.3 (26) using IMP with the option 

AUTO=1, which allows the best settings to be determined. The CTYPE option was, however, 

over-ridden and set to 0 in order to let the process go through the full set of iterations 

(NITER=500). Then 10000 Monte Carlo simulations were used to compute the distribution of 

the true and the predicted visual acuity changed from baseline at 24 months. 



Comparison of MA & MS in dose finding trials. 

12 
 

Results 

Model selection and model averaging 

Figure 2 represents the selected proportion and the distribution of estimated weights per 

candidate model as a function of the simulation scenario using AIC as the information 

criterion. In scenario I, where doses are around the      and emax is set to 30 letters,the 

proportion and weights are notably higher for the true (Emax) candidate model. However, 

from scenario II, by investigating doses only below     , both the Emax and Linear models 

are likely to be selected in 50.8% and 39.6% of cases, respectively. Using MA, the higher 

weights are for the Emax and Linear models with a median of 0.41 for the former and 0.29 for 

the latter. When little is known regarding the maximal effect of the drug, the Emax and Linear 

models are almost equally likely. 

The last simulation scenario explores the case of a flat dose-response relationship. With these 

settings, the proportion and weights are higher for the candidate models with the lowest 

number of estimated parameters i.e. Linear and Log-linear. 

Evaluation 

Clinically relevant drug effect: 

Table II reports the percentage of trials indicating a  CRE as a function of the scenario and the 

modeling approaches. Based on the true model and the population parameters   , the 

percentage of trials indicating a CRE is 100% for scenario I and II and 0% for scenario III. 

 In the first and third scenarios, in most of the trial replicates, the modeling approaches 

correctly concluded that there is a CRE for the former and no CRE for the latter. 

Regarding the second scenario, the highest percentages of trials indicating a CRE are 

achieved by the Linear and MA approaches, with 100% and 89%, respectively. 

Comparatively, using the true (Emax) candidate model or MS, the percentage is below 82%. 

Minimum effective dose: 
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The ability of the 6 modeling approaches to predict the correct target dose,     , is assessed 

via the RRMSE, the relative bias (Table III) and a boxplot representation of the estimated 

MED (Figure 3). Derived from the true model and the population parameters        is 

equal to 250    in the first and second scenario and capped at 500    in the third scenario. 

When focusing on the first scenario, apart from Linear and Log-linear candidate models, all 

modeling approaches provide a precise and accurate prediction of the target dose. In the 

second scenario, the lower and upper quartiles are closer to      using MA leading to a 

lower RRMSE and a smaller bias compared to the other modeling approaches. When 

comparing MS and MA, the RRMSE drops from 53.4% to 45.0% and the relative bias from 

12.2 to 6.4%. The Linear candidate model leads to a precise but biased prediction of the target 

dose.  

Finally, in the absence of a drug effect (scenario III), the MED is capped at 500    for almost 

all clinical trials regardless of the modeling approach. 

Kullback–Leibler divergence: 

Comparison of the different modeling approaches 

The Kullback-Leibler divergence is first used to compare predictive performances of the 

different modeling approaches over a set of 4 doses. Figure 4 is a boxplot representation of 

the total Kullback-Leibler divergence for the three different scenarios. Sigmoid and Emax 

models provide equivalent or better predictive performances than the other modeling 

approaches inon all scenarios. The mean total Kullback-Leibler divergence is reduced, up to 

50%, when using MA compared to MS. 

Comparison of the different information criteria 

MS and MA predictive performances were compared using the 5 different information criteria 

(Figure 5). In scenario II, regardless of the modeling approach, the distribution of the total 

Kullback-Leibler divergence is closer to 0 when using AIC compared to the other investigated 
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criteria. Thus, AIC provide better predictive performances than the other information criteria. 

When comparing the total Kullback-Leibler divergence of MS and MA as a function of the 

information criteria, MA has a consistently better predictive performance than MS. 

In simulation scenarios I and III, the 5 information criteria provide similar predictive 

performances. 

Discussion 

The primary objective of this study was to use clinical trial simulations (CTS),to compare the 

use of model selection (MS) versus model averaging (MA) in dose-finding clinical trials. CTS 

were based on a disease model characterizing the time course of visual acuity in wet age-

related macular degeneration patients, and an Emax dose-response relationship. Different 

scenarios were investigated assuming either (I) an informative design with doses around the 

ED50*, (II) only doses in the linear part of the dose response curve, and (III) no drug effect. 

Then, for each simulated trial, parameters of four candidate models (Emax, Sigmoid, Log-

linear and Linear) were estimated. Finally, using AIC as the information criterion, predictive 

performances of MS and MA modeling approaches were evaluated through three performance 

criteria focusing on the main objectives of a phase 2 clinical trial, i.e. the ability to correctly 

identify (i) a clinically relevant effect (CRE), (ii) the minimum effective dose (MED) and (iii) 

the dose-response relationship using the total Kullback-Leibler divergence (          . 

Results highlight that, under the scenario I and III, MS and MA provided similar predictive 

performances and led to an accurate and unbiased prediction of the true dose-response 

relationship. In the case where the investigated doses are below the ED50 (scenario II) and 

therefore when little is known regarding the maximal effect of the drug, MA was leading to 

better predictive performances than MS. MA was associated with (i) a higher percentage of 

trials indicating a CRE, (ii) a lower RRMSE with a smaller bias, and (iii) lower           

values compared to MS. A common misconception in MS and MA is to think that the goal is 
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to identify the true structural model. In scenario II, where the true (Emax) model cannot be 

supported by the trial data, bias with Emax is similar to bias with Linear, and the RRMSE is 

even lower for Linear. This explains why MA performs better than MS even if the median 

weight attributed to emax (0.41) is lower than the proportion of emax model (50.8%).A 

secondary aim of this analysis was to challenge the use of AIC by comparing MA and MS 

          values using 5 different information criteria. In this framework, regardless of the 

modeling approach, AIC was associated with lower          than BICN, BICntot, CAICN and 

CAICntot. Moreover, regardless of the information criterion, MA was consistently associated 

with lower          values than MS. 

Our results based on NLMEMs are in accordance with the literature. In the field of NLM, 

Schorning et al (15) have shown that MA outperforms MS in dose-finding trials. In 

NLMEMs, Aoki et al (19) highlighted that the MA method significantly decreases the effect 

of MS bias. Both studies show that AIC outperforms other information criteria. In addition to 

these two studies, we the present article explored the impact of the set of investigated doses 

on the predictive performances of MS and MA. Moreover, the predefined set of candidate 

models includes a disease progression model and an inter-individual variability within the 

dose response relationship. Finally, we extended the information criterion comparison from 2 

to 5. This comparison is based on the           which uses the entire probability distribution 

and is therefore more informative than other performance criteria.  

In our analysis, uncertainties around the estimated parameters were ignored, thus excluding 

the possibility of a clinically significant effect. In the context of NLMEM it can be extremely 

challenging to include parameter uncertainty. The normality assumption on parameter 

uncertainty distribution might not hold and, due to the study design and number of trial 

replicates, bootstrap/SIR become prohibitively costly in computation. However, one could 

argue that the present results are relevant in pharmacometry where simulations are often 
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performed without uncertainty. Predictions were used to compare the percentages of trials 

indicating a clinically relevant effect at the highest simulated doses. All candidate models 

may conclude to a flat dose response relationship, although another possibility could have 

been to include a model without a dose-response relationship as one of the candidate models. 

 For all scenarios, the Emax and Sigmoid model were associated with the lowest           

values emphasizing the notion that they can be used for all practical purposes (27,28). 

However, one should note that the true candidate model corresponds to the former and is 

nested to the latter. In addition, knowing that uncertainties around the estimated parameters 

were ignored in this framework, about it may be asked whether the Emax and Sigmoid 

models over-fit the data.  

In contrast to existing work, we explored the impact of the set of doses on the predictive 

performances of MA and MS. However, we did not quantify the impact of the number of 

patients, the study duration and the set of candidate models. The set of probable dose-

response relationships was selected from the literature (8,15,19), but other dose-response 

relationships, such as the umbrella or exponential one, could have been used. Additional 

scenarios are reported in the online supplementary information, to investigate the case where 

the true model (umbrella) is not part of the set of candidate models. The results highlights 

that, when the true model cannot be approximated by the set of candidate models, MS and 

MA have similar predictive performances. 

Regarding the information criteria comparison, results should be interpreted with caution as 

the comparison favors the AIC. In fact, all information criteria but one, the AIC, depend on 

the total number of patients, leading to over-penalization of complex models in the case, like 

here, of large study size. Moreover, the AIC is derived from the Kullback-Leibler divergence. 

It would be beneficial to extend this work by including parameter uncertainty as well as 

investigating other dose response relationships. It would also be interesting to vary the 
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number of patients and study duration. Finally, we believe that inclusion of different disease 

progression structures in the set of candidate models should be studied in more depth in the 

future in order to capture the model uncertainty around both the dose response relationship 

and the disease progression structure. 

We present here the interesting properties of MA compared to MS based on a simulation case 

study. Our results highlight that, in an informative design, MA and MS provided similar 

predictive performances and led to accurate prediction of the target dose. However, with less 

informative designs, by estimating weights for a predefined set of NLMEMs, MA showed 

better overall predictive performances than MS increasing the likelihood of accurately 

characterizing the dose-response relationship. 

Conclusion 

Dose-finding clinical trials data can be more efficiently analyzed by combining NLME 

models and model averaging. This leverages the information provided by clinical trials 

through a longitudinal analysis of the data while taking into account model uncertainty over a 

predefined set of candidate models. 
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 Legend to Figures  

 

Figure 1: Representation of the simulated median visual acuity change from baseline in 

function of the time and per dose group. The dashed horizontal line represents the end of trial. 

Panels A, B and C correspond to the simulation scenarios I, II and III, respectively. 
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Figure 2: Representation of the selected proportions, MS (panel A), and distribution of the 

weights, MA (panel B), per candidate model and for each simulation scenario using AIC as 

the information criterion. Yellow diamonds represent the selected proportions using MS. 
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Figure 3: Representation of the distribution of the predicted minimum effective dose for each 

modeling approach and each simulation scenario using AIC as the information criterion. Red 

diamonds represent the mean values and the dashed line represents the predicted MED using 

the true model and the true population parameters. 
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Figure 4: Representation of the distribution of the total Kullback-Leibler divergence for each 

modeling approach and each simulation scenario using AIC as the information criterion. The 

dashed line represents the total Kullback-Leibler divergence calculated using the true model 

and the true population parameters. Red diamonds represent the mean values. 
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Figure 5: Representation of the distribution of the total Kullback-Leibler divergence using MS 

(in yellow) and MA (in blue) for each information criterion and in simulation scenario II. The 

dashed line represents the total Kullback-Leibler divergence calculated using the true model 

and the true population parameters. Panel A, B and C correspond to the simulation scenarios I, 

II and III, respectively. Red diamonds represent the mean values 
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Table I: Parameter values    used to simulate the data assuming an Emax dose-response 

model. 
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  : Variance of the random effect 

  : Variance of the residual error 
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Table II: Percentage of trials indicating a clinically relevant effect at the dose of 500    for 

each modeling approach and each simulation scenario using AIC as the information criterion. 

Approach     of trials indicating a clinically 

relevant effect 

Scenario I Scenario II Scenario III 

Simulation values 100 100 0 

Emax 98.6 80.0 0.0 

Linear 100.0 100.0 0.0 

Log-linear 95.6 3.6 0.0 

Sigmoid 98.8 76.0 0.4 

Model selection 98.4 81.8 0.0 

Model averaging 98.4 89.0 0.0 

 

 

Table III: Relative bias and Relative root mean squared error (RRMSE) in the predicted 

minimal effective dose for each modeling approach and each simulation scenario using AIC 

as the information criterion. 

Approach Relative bias (%)  RRMSE     

Scenario I Scenario II  Scenario I Scenario II 

Emax 4.0 28.5  27.3 54.6 

Linear 49.0 -30.2  50.7 32.6 

Log-linear -3.6 98.8  42.7 99.1 

Sigmoid 2.4 32.3  26.4 59.5 

Model selection 2.6 12.2  30.0 53.4 

Model averaging 2.3 6.4  28.8 45.0 
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