S. Rosenberg, B. Packard, P. Aebersold, D. Solomon, S. Topalian et al., Use of Tumor-Infiltrating Lymphocytes and Interleukin-2 in the Immunotherapy of Patients with Metastatic Melanoma, New England Journal of Medicine, vol.319, issue.25, pp.1676-80, 1988.
DOI : 10.1056/NEJM198812223192527

S. Riddell, K. Watanabe, J. Goodrich, C. Li, M. Agha et al., Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones, Science, vol.257, issue.5067, pp.238-279, 1992.
DOI : 10.1126/science.1352912

C. Rooney, C. Smith, C. Ng, S. Loftin, C. Li et al., Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation, The Lancet, vol.345, issue.8941, pp.9-13, 1995.
DOI : 10.1016/S0140-6736(95)91150-2

L. Johnson, R. Morgan, M. Dudley, L. Cassard, J. Yang et al., Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen, Blood, vol.114, issue.3, pp.535-581, 2009.
DOI : 10.1182/blood-2009-03-211714

URL : http://www.bloodjournal.org/content/bloodjournal/114/3/535.full.pdf

M. Parkhurst, J. Yang, R. Langan, M. Dudley, D. Nathan et al., T Cells Targeting Carcinoembryonic Antigen Can Mediate Regression of Metastatic Colorectal Cancer but Induce Severe Transient Colitis, Molecular Therapy, vol.19, issue.3, pp.620-626, 2011.
DOI : 10.1038/mt.2010.272

URL : https://doi.org/10.1038/mt.2010.272

P. Robbins, Y. Lu, M. El-gamil, Y. Li, C. Gross et al., Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells, Nature Medicine, vol.360, issue.6, pp.747-52, 2013.
DOI : 10.1038/360171a0

URL : http://europepmc.org/articles/pmc3757932?pdf=render

T. Blankenstein, M. Leisegang, W. Uckert, and H. Schreiber, Targeting cancer-specific mutations by T cell receptor gene therapy, Current Opinion in Immunology, vol.33, pp.112-121, 2015.
DOI : 10.1016/j.coi.2015.02.005

URL : http://europepmc.org/articles/pmc4557613?pdf=render

R. Morgan, M. Dudley, J. Wunderlich, M. Hughes, J. Yang et al., Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes, Science, vol.314, issue.5796, pp.126-135, 2006.
DOI : 10.1126/science.1129003

A. Rapoport, E. Stadtmauer, G. Binder-scholl, O. Goloubeva, D. Vogl et al., NY-ESO-1???specific TCR???engineered T cells mediate sustained antigen-specific antitumor effects in myeloma, Nature Medicine, vol.72, issue.8, pp.914-935, 2015.
DOI : 10.1182/blood-2009-04-217604

URL : http://europepmc.org/articles/pmc4529359?pdf=render

P. Robbins, R. Morgan, S. Feldman, J. Yang, R. Sherry et al., Tumor Regression in Patients With Metastatic Synovial Cell Sarcoma and Melanoma Using Genetically Engineered Lymphocytes Reactive With NY-ESO-1, Journal of Clinical Oncology, vol.29, issue.7, pp.917-941, 2011.
DOI : 10.1200/JCO.2010.32.2537

URL : http://europepmc.org/articles/pmc3068063?pdf=render

R. Oren, M. Hod-marco, M. Haus-cohen, S. Thomas, D. Blat et al., Functional Comparison of Engineered T Cells Carrying a Native TCR versus TCR-like Antibody???Based Chimeric Antigen Receptors Indicates Affinity/Avidity Thresholds, The Journal of Immunology, vol.193, issue.11, pp.5733-5776, 2014.
DOI : 10.4049/jimmunol.1301769

URL : http://www.jimmunol.org/content/jimmunol/193/11/5733.full.pdf

Y. Reiter, D. Carlo, A. Fugger, L. Engberg, J. Pastan et al., Peptide-specific killing of antigen-presenting cells by a recombinant antibody-toxin fusion protein targeted to major histocompatibility complex/peptide class I complexes with T cell receptor-like specificity, Proceedings of the National Academy of Sciences, vol.1, issue.8, pp.4631-4637, 1997.
DOI : 10.1038/nm0895-837

S. Rafiq, T. Purdon, A. Daniyan, M. Koneru, T. Dao et al., Optimized T-cell receptor-mimic chimeric antigen receptor T cells directed toward the intracellular Wilms Tumor 1 antigen, Leukemia, vol.5, issue.8, 2017.
DOI : 10.1126/scitranslmed.3004916

URL : http://europepmc.org/articles/pmc5495623?pdf=render

Z. Eshhar, T. Waks, G. Gross, and D. Schindler, Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors., Proceedings of the National Academy of Sciences, vol.90, issue.2, pp.720-724, 1993.
DOI : 10.1073/pnas.90.2.720

G. Gross, T. Waks, and Z. Eshhar, Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity., Proceedings of the National Academy of Sciences, vol.86, issue.24, pp.10024-10032, 1989.
DOI : 10.1073/pnas.86.24.10024

URL : http://www.pnas.org/content/86/24/10024.full.pdf

M. Kershaw, J. Westwood, L. Parker, G. Wang, Z. Eshhar et al., A Phase I Study on Adoptive Immunotherapy Using Gene-Modified T Cells for Ovarian Cancer, Clinical Cancer Research, vol.12, issue.20, pp.6106-6121, 2006.
DOI : 10.1158/1078-0432.CCR-06-1183

URL : http://clincancerres.aacrjournals.org/content/clincanres/12/20/6106.full.pdf

C. Lamers, P. Van-elzakker, S. Langeveld, S. Sleijfer, and J. Gratama, Process validation and clinical evaluation of a protocol to generate gene-modified T lymphocytes for imunogene therapy for metastatic renal cell carcinoma: GMP-controlled transduction and expansion of patient's T lymphocytes using a carboxy anhydrase IX-specific scFv transgene, Cytotherapy, vol.8, issue.6, pp.542-53, 2006.
DOI : 10.1080/14653240601056396

B. Till, M. Jensen, J. Wang, E. Chen, B. Wood et al., Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T cells, Blood, vol.112, issue.6, pp.2261-71, 2008.
DOI : 10.1182/blood-2007-12-128843

URL : http://www.bloodjournal.org/content/bloodjournal/112/6/2261.full.pdf

B. Till, M. Jensen, J. Wang, X. Qian, A. Gopal et al., CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results, Blood, vol.119, issue.17, pp.3940-50, 2012.
DOI : 10.1182/blood-2011-10-387969

URL : http://www.bloodjournal.org/content/bloodjournal/119/17/3940.full.pdf

H. Li and Y. Zhao, Increasing the safety and efficacy of chimeric antigen receptor T cell therapy, Protein & Cell, vol.6, issue.10, pp.13238-13255, 2017.
DOI : 10.18632/oncotarget.2767

URL : https://link.springer.com/content/pdf/10.1007%2Fs13238-017-0411-9.pdf

W. Lim and C. June, The Principles of Engineering Immune Cells to Treat Cancer, Cell, vol.168, issue.4, pp.724-764, 2017.
DOI : 10.1016/j.cell.2017.01.016

URL : http://europepmc.org/articles/pmc5553442

S. Kenderian, D. Porter, and S. Gill, Chimeric Antigen Receptor T Cells and Hematopoietic Cell Transplantation: How Not to Put the CART Before the Horse, Biology of Blood and Marrow Transplantation, vol.23, issue.2, pp.235-281, 2017.
DOI : 10.1016/j.bbmt.2016.09.002

URL : http://europepmc.org/articles/pmc5237606?pdf=render

M. Davila and R. Brentjens, CD19-Targeted CAR T cells as novel cancer immunotherapy for relapsed or refractory B-cell acute lymphoblastic leukemia, Clin Adv Hematol Oncol, vol.14, pp.802-810, 2016.

R. Scheuermann and E. Racila, CD19 Antigen in Leukemia and Lymphoma Diagnosis and Immunotherapy, Leukemia & Lymphoma, vol.50, issue.5-6, pp.385-97, 1995.
DOI : 10.1016/0145-2126(87)90166-4

P. Engel, L. Zhou, D. Ord, S. Sato, B. Koller et al., Abnormal B lymphocyte delevopment, activation, and differentiation in mice that lack or overexpress the CD19 signal transduction molecule, Immunity, vol.3, issue.1, pp.39-50, 1995.
DOI : 10.1016/1074-7613(95)90157-4

URL : https://doi.org/10.1016/1074-7613(95)90157-4

M. Van-zelm, I. Reisli, M. Van-der-burg, D. Castano, C. Van-noesel et al., Gene, New England Journal of Medicine, vol.354, issue.18, pp.1901-1913, 2006.
DOI : 10.1056/NEJMoa051568

J. Kochenderfer, W. Wilson, J. Janik, M. Dudley, M. Stetler-stevenson et al., Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19, Blood, vol.116, issue.20, pp.4099-102, 2010.
DOI : 10.1182/blood-2010-04-281931

X. Wang, W. Chang, C. Wong, D. Colcher, M. Sherman et al., A transgene-encoded cell surface polypeptide for selection, in vivo tracking, and ablation of engineered cells, Blood, vol.118, issue.5, pp.1255-63, 2011.
DOI : 10.1182/blood-2011-02-337360

B. Philip, E. Kokalaki, L. Mekkaoui, S. Thomas, K. Straathof et al., A highly compact epitope-based marker/suicide gene for easier and safer T-cell therapy, Blood, vol.124, issue.8, pp.1277-87, 2014.
DOI : 10.1182/blood-2014-01-545020

URL : http://www.bloodjournal.org/content/bloodjournal/124/8/1277.full.pdf

C. Wu, K. Roybal, E. Puchner, J. Onuffer, and W. Lim, Remote control of therapeutic T cells through a small molecule-gated chimeric receptor, Science, vol.14, issue.6, p.4077, 2015.
DOI : 10.1016/j.sbi.2004.10.004

URL : http://europepmc.org/articles/pmc4721629?pdf=render

S. Wilkie, M. Van-schalkwyk, S. Hobbs, D. Davies, S. Van-der-stegen et al., Dual Targeting of ErbB2 and MUC1 in Breast Cancer Using Chimeric Antigen Receptors Engineered to Provide Complementary Signaling, Journal of Clinical Immunology, vol.19, issue.5, pp.1059-70, 2012.
DOI : 10.1038/mt.2011.9

C. Kloss, M. Condomines, M. Cartellieri, M. Bachmann, and M. Sadelain, Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T cells, Nature Biotechnology, vol.3, issue.1, pp.71-76, 2013.
DOI : 10.1073/pnas.86.10.3833

URL : http://europepmc.org/articles/pmc5505184?pdf=render

K. Newick, O. Brien, S. Moon, E. Albelda, and S. , CAR T Cell Therapy for Solid Tumors, Annual Review of Medicine, vol.68, issue.1, pp.139-52, 2017.
DOI : 10.1146/annurev-med-062315-120245

I. Scarfo and M. Maus, Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment, Journal for ImmunoTherapy of Cancer, vol.375, issue.1, p.28, 2017.
DOI : 10.1056/NEJMoa1610497

X. Liu, R. Ranganathan, S. Jiang, C. Fang, J. Sun et al., A Chimeric Switch-Receptor Targeting PD1 Augments the Efficacy of Second-Generation CAR T Cells in Advanced Solid Tumors, Cancer Research, vol.76, issue.6, pp.1578-90, 2016.
DOI : 10.1158/0008-5472.CAN-15-2524

H. Yu, E. Sotillo, C. Harrington, G. Wertheim, M. Paessler et al., Repeated loss of target surface antigen after immunotherapy in primary mediastinal large B cell lymphoma, American Journal of Hematology, vol.7, issue.1, pp.11-14, 2017.
DOI : 10.1038/ncomms12320

URL : http://onlinelibrary.wiley.com/doi/10.1002/ajh.24594/pdf

S. Gill, M. Maus, and D. Porter, Chimeric antigen receptor T cell therapy: 25years in the making, Blood Reviews, vol.30, issue.3, pp.157-67, 2016.
DOI : 10.1016/j.blre.2015.10.003

K. Fousek and N. Ahmed, The Evolution of T-cell Therapies for Solid Malignancies, Clinical Cancer Research, vol.21, issue.15, pp.3384-92, 2015.
DOI : 10.1158/1078-0432.CCR-14-2675

R. Morgan, J. Yang, M. Kitano, M. Dudley, C. Laurencot et al., Case Report of a Serious Adverse Event Following the Administration of T Cells Transduced With a Chimeric Antigen Receptor Recognizing ERBB2, Molecular Therapy, vol.18, issue.4, pp.843-51, 2010.
DOI : 10.1038/mt.2010.24

C. Lamers, S. Sleijfer, S. Van-steenbergen, P. Van-elzakker, B. Van-krimpen et al., Treatment of Metastatic Renal Cell Carcinoma With CAIX CAR-engineered T cells: Clinical Evaluation and Management of On-target Toxicity, Molecular Therapy, vol.21, issue.4, pp.904-916, 2013.
DOI : 10.1038/mt.2013.17

K. Roybal, L. Rupp, L. Morsut, W. Walker, K. Mcnally et al., Precision Tumor Recognition by T Cells With Combinatorial Antigen-Sensing Circuits, Cell, vol.164, issue.4, pp.770-779, 2016.
DOI : 10.1016/j.cell.2016.01.011

URL : https://doi.org/10.1016/j.cell.2016.01.011

K. Roybal, J. Williams, L. Morsut, L. Rupp, I. Kolinko et al., Engineering T Cells with Customized Therapeutic Response Programs Using Synthetic Notch Receptors, Cell, vol.167, issue.2, pp.419-451, 2016.
DOI : 10.1016/j.cell.2016.09.011

URL : http://europepmc.org/articles/pmc5072533?pdf=render

P. Tiberghien, C. Reynolds, J. Keller, S. Spence, M. Deschaseaux et al., Ganciclovir treatment of herpes simplex thymidine kinase-transduced primary T lymphocytes: an approach for specific in vivo donor T-cell depletion after bone marrow transplantation, Blood, vol.84, pp.1333-1374, 1994.

C. Bonini, G. Ferrari, S. Verzeletti, P. Servida, E. Zappone et al., HSV-TK Gene Transfer into Donor Lymphocytes for Control of Allogeneic Graft-Versus-Leukemia, Science, vol.276, issue.5319, pp.1719-1743, 1997.
DOI : 10.1126/science.276.5319.1719

V. Hoyos, B. Savoldo, C. Quintarelli, A. Mahendravada, M. Zhang et al., Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety, Leukemia, vol.175, issue.6, pp.1160-70, 2010.
DOI : 10.1016/j.bbmt.2007.04.005

URL : http://www.nature.com/leu/journal/v24/n6/pdf/leu201075a.pdf

M. Chmielewski, A. Hombach, and H. Abken, Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma, Immunological Reviews, vol.60, issue.1, pp.83-90, 2014.
DOI : 10.1007/s00262-011-0998-2

H. Pegram, J. Lee, E. Hayman, G. Imperato, T. Tedder et al., Tumor-targeted T cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning, Blood, vol.119, issue.18, pp.4133-4174, 2012.
DOI : 10.1182/blood-2011-12-400044

URL : http://www.bloodjournal.org/content/bloodjournal/119/18/4133.full.pdf

L. Zhang, R. Morgan, J. Beane, Z. Zheng, M. Dudley et al., Tumor-Infiltrating Lymphocytes Genetically Engineered with an Inducible Gene Encoding Interleukin-12 for the Immunotherapy of Metastatic Melanoma, Clinical Cancer Research, vol.21, issue.10
DOI : 10.1158/1078-0432.CCR-14-2085

K. Iwahori, S. Kakarla, M. Velasquez, F. Yu, Z. Yi et al., Engager T Cells: A New Class of Antigen-specific T Cells That Redirect Bystander T Cells, Molecular Therapy, vol.23, issue.1, pp.171-179, 2015.
DOI : 10.1038/mt.2014.156

URL : https://doi.org/10.1038/mt.2014.156

M. Compte, B. Blanco, F. Serrano, A. Cuesta, L. Sanz et al., Inhibition of tumor growth in vivo by in situ secretion of bispecific anti-CEA ?? anti-CD3 diabodies from lentivirally transduced human lymphocytes, Cancer Gene Therapy, vol.9, issue.4, pp.380-388, 2007.
DOI : 10.1007/978-3-642-56114-6_2

J. Craddock, A. Lu, A. Bear, M. Pule, M. Brenner et al., Enhanced Tumor Trafficking of GD2 Chimeric Antigen Receptor T Cells by Expression of the Chemokine Receptor CCR2b, Journal of Immunotherapy, vol.33, issue.8, pp.780-788, 2010.
DOI : 10.1097/CJI.0b013e3181ee6675

E. Moon, C. Carpenito, J. Sun, L. Wang, V. Kapoor et al., Expression of a Functional CCR2 Receptor Enhances Tumor Localization and Tumor Eradication by Retargeted Human T cells Expressing a Mesothelin-Specific Chimeric Antibody Receptor, Clinical Cancer Research, vol.17, issue.14, pp.4719-4749, 2011.
DOI : 10.1158/1078-0432.CCR-11-0351

L. Wang, A. Lo, J. Scholler, J. Sun, R. Majumdar et al., Targeting Fibroblast Activation Protein in Tumor Stroma with Chimeric Antigen Receptor T Cells Can Inhibit Tumor Growth and Augment Host Immunity without Severe Toxicity, Cancer Immunology Research, vol.2, issue.2, pp.154-66, 2014.
DOI : 10.1158/2326-6066.CIR-13-0027

URL : http://cancerimmunolres.aacrjournals.org/content/canimm/2/2/154.full.pdf

I. Caruana, B. Savoldo, V. Hoyos, G. Weber, H. Liu et al., Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes, Nature Medicine, vol.17, issue.5, pp.524-533, 2015.
DOI : 10.1016/j.neo.2014.11.007

URL : http://europepmc.org/articles/pmc4425589?pdf=render

K. Newick, O. Brien, S. Sun, J. Kapoor, V. Maceyko et al., Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization, Cancer Immunology Research, vol.4, issue.6, pp.541-51, 2016.
DOI : 10.1158/2326-6066.CIR-15-0263

URL : http://cancerimmunolres.aacrjournals.org/content/canimm/4/6/541.full.pdf

A. Wallace, V. Kapoor, J. Sun, P. Mrass, W. Weninger et al., Transforming Growth Factor-?? Receptor Blockade Augments the Effectiveness of Adoptive T-Cell Therapy of Established Solid Cancers, Clinical Cancer Research, vol.14, issue.12, pp.3966-74, 2008.
DOI : 10.1158/1078-0432.CCR-08-0356

C. Bollard, C. Rossig, M. Calonge, M. Huls, H. Wagner et al., Adapting a transforming growth factor beta -related tumor protection strategy to enhance antitumor immunity, Blood, vol.99, issue.9, pp.3179-87, 2002.
DOI : 10.1182/blood.V99.9.3179

URL : http://www.bloodjournal.org/content/bloodjournal/99/9/3179.full.pdf

P. Spear, A. Barber, A. Rynda-apple, and C. Sentman, Chimeric Antigen Receptor T Cells Shape Myeloid Cell Function within the Tumor Microenvironment through IFN-?? and GM-CSF, The Journal of Immunology, vol.188, issue.12, pp.6389-98, 2012.
DOI : 10.4049/jimmunol.1103019

URL : http://www.jimmunol.org/content/jimmunol/188/12/6389.full.pdf

J. Markley and M. Sadelain, IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell-mediated rejection of systemic lymphoma in immunodeficient mice, Blood, vol.115, issue.17, pp.3508-3527, 2010.
DOI : 10.1182/blood-2009-09-241398

E. Moon, R. Ranganathan, E. Eruslanov, S. Kim, K. Newick et al., Blockade of Programmed Death 1 Augments the Ability of Human T Cells Engineered to Target NY-ESO-1 to Control Tumor Growth after Adoptive Transfer, Clinical Cancer Research, vol.22, issue.2, pp.436-483, 2016.
DOI : 10.1158/1078-0432.CCR-15-1070

L. John, C. Devaud, C. Duong, C. Yong, P. Beavis et al., Anti-PD-1 Antibody Therapy Potently Enhances the Eradication of Established Tumors By Gene-Modified T Cells, Clinical Cancer Research, vol.19, issue.20, pp.5636-5682, 2013.
DOI : 10.1158/1078-0432.CCR-13-0458

URL : http://clincancerres.aacrjournals.org/content/clincanres/19/20/5636.full.pdf

S. Kobold, S. Grassmann, M. Chaloupka, C. Lampert, S. Wenk et al., Impact of a New Fusion Receptor on PD-1???Mediated Immunosuppression in Adoptive T Cell Therapy, JNCI: Journal of the National Cancer Institute, vol.20, issue.9, 2015.
DOI : 10.1158/1078-0432.CCR-13-3017

M. Riese, L. Wang, E. Moon, R. Joshi, A. Ranganathan et al., Enhanced Effector Responses in Activated CD8+ T Cells Deficient in Diacylglycerol Kinases, Cancer Research, vol.73, issue.12, pp.3566-77, 2013.
DOI : 10.1158/0008-5472.CAN-12-3874

URL : http://cancerres.aacrjournals.org/content/canres/73/12/3566.full.pdf