K. Morris and J. Mattick, The rise of regulatory RNA, Nature Reviews Genetics, vol.10, issue.6, pp.423-460, 2014.
DOI : 10.1126/science.1102513

URL : http://europepmc.org/articles/pmc4314111?pdf=render

T. Derrien, R. Johnson, G. Bussotti, A. Tanzer, S. Djebali et al., The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression, Genome Research, vol.22, issue.9
DOI : 10.1101/gr.132159.111

URL : https://hal.archives-ouvertes.fr/hal-01205054

J. Harrow, A. Frankish, J. Gonzalez, E. Tapanari, M. Diekhans et al., GENCODE: The reference human genome annotation for The ENCODE Project, Genome Research, vol.22, issue.9, pp.1760-74, 2012.
DOI : 10.1101/gr.135350.111

URL : http://genome.cshlp.org/content/22/9/1760.full.pdf

M. Huarte, The emerging role of lncRNAs in cancer, Nature Medicine, vol.512, issue.11, pp.1253-61, 2015.
DOI : 10.1016/j.cell.2008.10.012

G. Zheng, B. Do, D. Webster, P. Khavari, and H. Chang, Dicer-microRNA-Myc circuit promotes transcription of hundreds of long noncoding RNAs, Nature Structural & Molecular Biology, vol.791, issue.7, pp.585-90, 2014.
DOI : 10.1101/gr.166231.113

URL : http://europepmc.org/articles/pmc5509563?pdf=render

X. Zhang, R. Gejman, A. Mahta, Y. Zhong, K. Rice et al., Maternally Expressed Gene 3, an Imprinted Noncoding RNA Gene, Is Associated with Meningioma Pathogenesis and Progression, Cancer Research, vol.70, issue.6, pp.2350-2358, 2010.
DOI : 10.1158/0008-5472.CAN-09-3885

. Fig, 6 lincRNA risk prediction combined with EMC92 risk prediction. a IFM/DFCI validation dataset and b MMRF CoMMpass dataset for PFS and OS respectively. b high-risk for both predictor, (LO) lincRNA only high-risk, EO) EMC92 only high-risk, and (LR) lowrisk for both predictors

M. Fulciniti, N. Amodio, R. Bandi, A. Cagnetta, M. Samur et al., miR-23b/SP1/c-myc forms a feed-forward loop supporting multiple myeloma cell growth, Blood Cancer Journal, vol.6, issue.1, p.380, 2016.
DOI : 10.1101/gad.1712408

URL : http://www.nature.com/bcj/journal/v6/n1/pdf/bcj2015106a.pdf

R. Zarate, V. Boni, E. Bandres, and J. Garcia-foncillas, MiRNAs and LincRNAs: Could They Be Considered as Biomarkers in Colorectal Cancer?, International Journal of Molecular Sciences, vol.28, issue.1, pp.840-65, 2012.
DOI : 10.1007/s11095-011-0548-9

URL : http://www.mdpi.com/1422-0067/13/1/840/pdf

N. Yang, J. Chen, H. Zhang, X. Wang, H. Yao et al., LncRNA OIP5-AS1 loss-induced microRNA-410 accumulation regulates cell proliferation and apoptosis by targeting KLF10 via activating PTEN/PI3K/AKT pathway in multiple myeloma, Cell Death and Disease, vol.39, issue.8, p.2975, 2017.
DOI : 10.1016/j.bbrc.2016.10.047

URL : https://www.nature.com/articles/cddis2017358.pdf

D. Gao, A. Lv, H. Li, D. Han, and Y. Zhang, LncRNA MALAT-1 Elevates HMGB1 to Promote Autophagy Resulting in Inhibition of Tumor Cell Apoptosis in Multiple Myeloma, Journal of Cellular Biochemistry, vol.63, issue.6, pp.3341-3349, 2017.
DOI : 10.4149/neo_2016_605

D. Ronchetti, M. Manzoni, K. Todoerti, A. Neri, and L. Agnelli, In Silico Characterization of miRNA and Long Non-Coding RNA Interplay in Multiple Myeloma, Genes, vol.7, issue.12, p.107, 2016.
DOI : 10.1517/14728222.2016.1164693

Y. Meng, X. He, Y. Huang, Q. Wu, Y. Zhou et al., Long Noncoding RNA CRNDE Promotes Multiple Myeloma Cell Growth by Suppressing miR-451, Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, vol.25, issue.7, pp.1207-1221, 2017.
DOI : 10.3727/096504017X14886679715637

B. Li, P. Chen, J. Qu, L. Shi, W. Zhuang et al., Transcript in Mesenchymal Stem Cells from Multiple Myeloma, Journal of Biological Chemistry, vol.10, issue.42, pp.29365-75, 2014.
DOI : 10.1016/S0092-8674(02)00641-4

D. Ronchetti, L. Agnelli, E. Taiana, S. Galletti, M. Manzoni et al., Distinct lncRNA transcriptional fingerprints characterize progressive stages of multiple myeloma, Oncotarget, vol.7, issue.12, pp.14814-14844, 2016.
DOI : 10.18632/oncotarget.7442

URL : http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=7442&path%5B%5D=21860

S. Cho, Y. Chang, C. Chang, S. Lin, Y. Liu et al., MALAT1 long non-coding RNA is overexpressed in multiple myeloma and may serve as a marker to predict disease progression, BMC Cancer, vol.117, issue.1, p.809, 2014.
DOI : 10.1182/blood-2010-08-300863

URL : https://bmccancer.biomedcentral.com/track/pdf/10.1186/1471-2407-14-809?site=bmccancer.biomedcentral.com

Z. Du, T. Sun, E. Hacisuleyman, T. Fei, X. Wang et al., Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer, Nature Communications, vol.339, p.10982, 2016.
DOI : 10.1126/science.1235122

URL : http://www.nature.com/articles/ncomms10982.pdf

D. Beck, J. Thoms, C. Palu, T. Herold, A. Shah et al., A four-gene LincRNA expression signature predicts risk in multiple cohorts of acute myeloid leukemia patients, Leukemia, vol.92, issue.2, pp.263-272, 2018.
DOI : 10.1038/nmeth.3321

J. Mendell, Targeting a Long Noncoding RNA in Breast Cancer, New England Journal of Medicine, vol.374, issue.23, pp.2287-2296, 2016.
DOI : 10.1056/NEJMcibr1603785

M. Attal, V. Lauwers-cances, C. Hulin, X. Leleu, D. Caillot et al., Lenalidomide, Bortezomib, and Dexamethasone with Transplantation for Myeloma, New England Journal of Medicine, vol.376, issue.14, pp.1311-1331, 2017.
DOI : 10.1056/NEJMoa1611750

URL : https://hal.archives-ouvertes.fr/hal-01557406

R. Patro, G. Duggal, M. Love, R. Irizarry, and C. Kingsford, Salmon provides fast and bias-aware quantification of transcript expression, Nature Methods, vol.5, issue.4, pp.417-426, 2017.
DOI : 10.1186/gb-2011-12-2-r13

URL : http://europepmc.org/articles/pmc5600148?pdf=render

C. Soneson, M. Love, and M. Robinson, Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences, F1000Research, vol.371, p.1521, 2015.
DOI : 10.5256/f1000research.7563.d114730

URL : https://f1000research.com/articles/4-1521/v1/pdf

M. Robinson and A. Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biology, vol.11, issue.3, p.25, 2010.
DOI : 10.1186/gb-2010-11-3-r25

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2010-11-3-r25?site=genomebiology.biomedcentral.com

C. Law, Y. Chen, W. Shi, and G. Smyth, voom: precision weights unlock linear model analysis tools for RNA-seq read counts, Genome Biology, vol.15, issue.2
DOI : 10.1186/gb-2004-5-10-r80

URL : https://genomebiology.biomedcentral.com/track/pdf/10.1186/gb-2014-15-2-r29?site=genomebiology.biomedcentral.com

M. Ritchie, B. Phipson, D. Wu, Y. Hu, C. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Research, vol.15, issue.7, p.47, 2015.
DOI : 10.1186/s13059-014-0465-4

URL : https://academic.oup.com/nar/article-pdf/43/7/e47/7207289/gkv007.pdf

M. Samur, P. Shah, X. Wang, S. Minvielle, F. Magrangeas et al., The shaping and functional consequences of the dosage effect landscape in multiple myeloma, BMC Genomics, vol.14, issue.1, p.672, 2013.
DOI : 10.1038/nrc2663

URL : https://hal.archives-ouvertes.fr/inserm-00903866

R. Kuiper, A. Broyl, Y. De-knegt, M. Van-vliet, E. Van-beers et al., A gene expression signature for high-risk multiple myeloma, Leukemia, vol.57, issue.11, pp.2406-2419, 2012.
DOI : 10.4065/mcp.2009.0603

URL : http://www.nature.com/leu/journal/v26/n11/pdf/leu2012127a.pdf

N. Munshi, H. Avet-loiseau, A. Rawstron, R. Owen, J. Child et al., Association of Minimal Residual Disease With Superior Survival Outcomes in Patients With Multiple Myeloma, JAMA Oncology, vol.3, issue.1, pp.28-35, 2017.
DOI : 10.1001/jamaoncol.2016.3160

J. Shaughnessy, . Jr, F. Zhan, B. Burington, Y. Huang et al., A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1, Blood, vol.109, issue.6, pp.2276-84, 2007.
DOI : 10.1182/blood-2006-07-038430

G. Mulligan, C. Mitsiades, B. Bryant, F. Zhan, W. Chng et al., Gene expression profiling and correlation with outcome in clinical trials of the proteasome inhibitor bortezomib, Blood, vol.109, issue.8, pp.3177-88, 2007.
DOI : 10.1182/blood-2006-09-044974

O. Decaux, L. Lode, F. Magrangeas, C. Charbonnel, W. Gouraud et al., Prediction of Survival in Multiple Myeloma Based on Gene Expression Profiles Reveals Cell Cycle and Chromosomal Instability Signatures in High-Risk Patients and Hyperdiploid Signatures in Low-Risk Patients: A Study of the Intergroupe Francophone du My??lome, Journal of Clinical Oncology, vol.26, issue.29, pp.4798-805, 2008.
DOI : 10.1200/JCO.2007.13.8545