O. Abdel-rahman, Evaluation of the eighth American Joint Committee on Cancer staging system for malignant melanoma of the skin, Future Oncology, vol.18, issue.8, pp.471-481, 2018.
DOI : 10.2217/imt-2016-0025

K. Miller, R. Siegel, C. Lin, A. Mariotto, J. Kramer et al., Cancer treatment and survivorship statistics, 2016, Cancer treatment and survivorship statistics, pp.271-289, 2016.
DOI : 10.3322/caac.21343

M. Kuske, R. Rauschenberg, M. Garzarolli, M. Meredyth-stewart, S. Beissert et al., Melanoma Brain Metastases: Local Therapies, Targeted Therapies, Immune Checkpoint Inhibitors and Their Combinations???Chances and Challenges, American Journal of Clinical Dermatology, vol.3, issue.11, 2018.
DOI : 10.1158/2326-6066.CIR-15-0071

URL : https://link.springer.com/content/pdf/10.1007%2Fs40257-018-0346-9.pdf

A. Najem, M. Krayem, A. Perdrix, J. Kerger, A. Awada et al., New Drug Combination Strategies in Melanoma: Current Status and Future Directions, Anticancer Res, vol.37, pp.5941-5953, 2017.

R. Marconcini, F. Spagnolo, L. Stucci, S. Ribero, E. Marra et al., Current status and perspectives in immunotherapy for metastatic melanoma, Oncotarget, vol.9, pp.12452-12470, 2018.
DOI : 10.18632/oncotarget.23746

URL : https://iris.unito.it/bitstream/2318/1665560/1/oncotarget-09-12452.pdf

J. Lee, Epigenetic Regulation by Long Noncoding RNAs, Science, vol.363, issue.2, pp.1435-1439, 2012.
DOI : 10.1056/NEJMra0905980

G. Palade, A SMALL PARTICULATE COMPONENT OF THE CYTOPLASM, The Journal of Cell Biology, vol.1, issue.1, pp.59-68, 1955.
DOI : 10.1083/jcb.1.1.59

URL : http://jcb.rupress.org/content/jcb/1/1/59.full.pdf

M. Hoagland, M. Stephenson, J. Scott, L. Hecht, and P. Zamecnik, A soluble ribonucleic acid intermediate in protein synthesis, J Biol Chem, vol.231, pp.241-257, 1958.

K. Morris and J. Mattick, The rise of regulatory RNA, Nature Reviews Genetics, vol.10, issue.6, pp.423-437, 2014.
DOI : 10.1126/science.1102513

URL : http://europepmc.org/articles/pmc4314111?pdf=render

S. Djuranovic, A. Nahvi, and R. Green, A Parsimonious Model for Gene Regulation by miRNAs, Science, vol.21, issue.15, pp.550-553, 2011.
DOI : 10.1101/gad.1566807

URL : http://europepmc.org/articles/pmc3955125?pdf=render

Y. Lee, K. Jeon, J. Lee, S. Kim, and V. Kim, MicroRNA maturation: stepwise processing and subcellular localization, The EMBO Journal, vol.21, issue.17, pp.4663-4670, 2002.
DOI : 10.1093/emboj/cdf476

URL : http://emboj.embopress.org/content/embojnl/21/17/4663.full.pdf

R. Friedman, K. Farh, C. Burge, and D. Bartel, Most mammalian mRNAs are conserved targets of microRNAs, Genome Research, vol.19, issue.1, pp.92-105, 2009.
DOI : 10.1101/gr.082701.108

URL : http://genome.cshlp.org/content/19/1/92.full.pdf

A. Esquela-kerscher and F. Slack, Oncomirs ??? microRNAs with a role in cancer, Nature Reviews Cancer, vol.102, issue.4, pp.259-269, 2006.
DOI : 10.1073/pnas.0509603102

B. Lewis, C. Burge, and D. Bartel, Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets, Cell, vol.120, issue.1, pp.15-20, 2005.
DOI : 10.1016/j.cell.2004.12.035

URL : https://doi.org/10.1016/j.cell.2004.12.035

T. Derrien, R. Johnson, G. Bussotti, A. Tanzer, S. Djebali et al., The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression, Genome Research, vol.22, issue.9
DOI : 10.1101/gr.132159.111

URL : https://hal.archives-ouvertes.fr/hal-01205054

D. Hanahan and R. Weinberg, The Hallmarks of Cancer, Cell, vol.100, issue.1, pp.57-70, 2000.
DOI : 10.1016/S0092-8674(00)81683-9

W. Zhang and H. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells, Cell Research, vol.413, issue.supp 1, pp.9-18, 2002.
DOI : 10.1038/35098202

I. Asangani, P. Harms, L. Dodson, M. Pandhi, L. Kunju et al., Genetic and epigenetic loss of microRNA-31 leads to feed-forward expression of EZH2 in melanoma, Oncotarget, vol.3, issue.9, pp.1011-1025, 2012.
DOI : 10.18632/oncotarget.622

L. Poliseno, A. Haimovic, M. Segura, D. Hanniford, P. Christos et al., Histology-Specific MicroRNA Alterations in Melanoma, Journal of Investigative Dermatology, vol.132, issue.7, pp.1860-1868, 2012.
DOI : 10.1038/jid.2011.451

URL : https://doi.org/10.1038/jid.2011.451

L. Jiang, X. Lv, J. Li, J. Li, X. Li et al., The status of microRNA-21 expression and its clinical significance in human cutaneous malignant melanoma, Acta Histochemica, vol.114, issue.6, pp.582-588, 2012.
DOI : 10.1016/j.acthis.2011.11.001

L. Goedert, C. Pereira, J. Roszik, J. Placa, C. Cardoso et al., RMEL3, a novel BRAFV600E- associated long noncoding RNA, is required for MAPK and PI3K signaling in melanoma, Oncotarget, vol.7, pp.36711-36718, 2016.
DOI : 10.18632/oncotarget.9164

URL : http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=9164&path%5B%5D=28071

B. Cai, Y. Zheng, S. Ma, Q. Xing, X. Wang et al., BANCR contributes to the growth and invasion of melanoma by functioning as a competing endogenous RNA to upregulate Notch2 expression by sponging miR-204, International Journal of Oncology, vol.51, issue.6, pp.1941-1951, 2017.
DOI : 10.3892/ijo.2017.4173

R. Li, L. Zhang, L. Jia, Y. Duan, Y. Li et al., Long Non-Coding RNA BANCR Promotes Proliferation in Malignant Melanoma by Regulating MAPK Pathway Activation, PLoS ONE, vol.15, issue.2, p.100893, 2014.
DOI : 10.1371/journal.pone.0100893.t001

URL : https://doi.org/10.1371/journal.pone.0100893

V. Grignol, E. Fairchild, J. Zimmerer, G. Lesinski, M. Walker et al., miR-21 and miR-155 are associated with mitotic activity and lesion depth of borderline melanocytic lesions, British Journal of Cancer, vol.179, issue.7, pp.1023-1029, 2011.
DOI : 10.1038/cr.2008.24

URL : http://www.nature.com/bjc/journal/v105/n7/pdf/bjc2011288a.pdf

I. Satzger, A. Mattern, U. Kuettler, D. Weinspach, M. Niebuhr et al., microRNA-21 is upregulated in malignant melanoma and influences apoptosis of melanocytic cells, Experimental Dermatology, vol.7, issue.7, pp.509-514, 2012.
DOI : 10.1038/nrc2169

C. Yang, J. Yue, S. Pfeffer, C. Handorf, and L. Pfeffer, MicroRNA miR-21 Regulates the Metastatic Behavior of B16 Melanoma Cells, Journal of Biological Chemistry, vol.240, issue.45, pp.39172-39178, 2011.
DOI : 10.1073/pnas.1103735108

URL : http://www.jbc.org/content/286/45/39172.full.pdf

B. Melnik, MiR-21: an environmental driver of malignant melanoma?, Journal of Translational Medicine, vol.12, issue.6, p.202, 2015.
DOI : 10.3390/s120303359

URL : https://translational-medicine.biomedcentral.com/track/pdf/10.1186/s12967-015-0570-5?site=translational-medicine.biomedcentral.com

J. Sousa, R. Torrieri, R. Silva, C. Pereira, V. Valente et al., Novel Primate-Specific Genes, RMEL 1, 2 and 3, with Highly Restricted Expression in Melanoma, Assessed by New Data Mining Tool, PLoS ONE, vol.35, issue.10, p.13510, 2010.
DOI : 10.1371/journal.pone.0013510.s008

URL : https://doi.org/10.1371/journal.pone.0013510

M. Forloni, S. Dogra, Y. Dong, D. Conte, J. Ou et al., Supplementary file 1., eLife, vol.23, p.1460, 2014.
DOI : 10.7554/eLife.01460.034

M. Raimo, F. Orso, E. Grassi, D. Cimino, E. Penna et al., miR-146a Exerts Differential Effects on Melanoma Growth and Metastatization, Molecular Cancer Research, vol.14, issue.6, pp.548-562, 2016.
DOI : 10.1158/1541-7786.MCR-15-0425-T

URL : http://mcr.aacrjournals.org/content/14/6/548.full.pdf

E. Leucci, R. Vendramin, M. Spinazzi, P. Laurette, M. Fiers et al., Melanoma addiction to the long non-coding RNA SAMMSON, Nature, vol.10, issue.7595, pp.518-522, 2016.
DOI : 10.1186/gb-2009-10-6-r64

M. Aftab, M. Dinger, and R. Perera, The role of microRNAs and long non-coding RNAs in the pathology, diagnosis, and management of melanoma, Archives of Biochemistry and Biophysics, vol.563, pp.60-70, 2014.
DOI : 10.1016/j.abb.2014.07.022

S. Weiss, D. Hanniford, E. Hernando, and I. Osman, Revisiting determinants of prognosis in cutaneous melanoma, Cancer, vol.113, issue.suppl3, pp.4108-4123, 2015.
DOI : 10.1002/cncr.23955

URL : http://onlinelibrary.wiley.com/doi/10.1002/cncr.29634/pdf

G. Boyle, S. Woods, V. Bonazzi, M. Stark, E. Hacker et al., Melanoma cell invasiveness is regulated by miR-211 suppression of the BRN2 transcription factor, Pigment Cell & Melanoma Research, vol.50, issue.3, pp.525-537, 2011.
DOI : 10.1167/iovs.08-2681

C. Levy, M. Khaled, D. Iliopoulos, M. Janas, S. Schubert et al., Intronic miR-211 Assumes the Tumor Suppressive Function of Its Host Gene in Melanoma, Molecular Cell, vol.40, issue.5, pp.841-849, 2010.
DOI : 10.1016/j.molcel.2010.11.020

URL : https://doi.org/10.1016/j.molcel.2010.11.020

J. Mazar, K. Deyoung, D. Khaitan, E. Meister, A. Almodovar et al., The Regulation of miRNA-211 Expression and Its Role in Melanoma Cell Invasiveness, PLoS ONE, vol.100, issue.11, p.13779, 2010.
DOI : 10.1371/journal.pone.0013779.s005

URL : https://doi.org/10.1371/journal.pone.0013779

N. Latchana, A. Ganju, J. Howard, and W. Carson, MicroRNA dysregulation in melanoma, Surgical Oncology, vol.25, issue.3, pp.184-189, 2016.
DOI : 10.1016/j.suronc.2016.05.017

R. Georgantas, K. Streicher, X. Luo, L. Greenlees, W. Zhu et al., MicroRNA-206 induces G1 arrest in melanoma by inhibition of CDK4 and Cyclin D, Pigment Cell & Melanoma Research, vol.433, issue.Suppl 6, pp.275-286, 2014.
DOI : 10.1016/j.bbrc.2013.02.084

J. Chen, H. Feilotter, G. Pare, X. Zhang, J. Pemberton et al., MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma, The American Journal of Pathology, vol.176, issue.5, pp.2520-2529, 2010.
DOI : 10.2353/ajpath.2010.091061

URL : http://europepmc.org/articles/pmc2861116?pdf=render

J. Schultz, P. Lorenz, G. Gross, S. Ibrahim, and M. Kunz, MicroRNA let-7b targets important cell cycle molecules in malignant melanoma cells and interferes with anchorage-independent growth, Cell Research, vol.62, issue.5, pp.549-557, 2008.
DOI : 10.1158/1078-0432.CCR-06-1820

URL : http://www.nature.com/cr/journal/v18/n5/pdf/cr200845a.pdf

D. Xu, J. Tan, M. Zhou, B. Jiang, H. Xie et al., Let-7b and microRNA-199a inhibit the proliferation of B16F10 melanoma cells, Oncology Letters, vol.4, issue.5, pp.941-946, 2012.
DOI : 10.3892/ol.2012.878

R. Pannem, C. Dorn, K. Ahlqvist, A. Bosserhoff, C. Hellerbrand et al., CYLD controls c-MYC expression through the JNK-dependent signaling pathway in hepatocellular carcinoma, Carcinogenesis, vol.18, issue.2, pp.461-468, 2014.
DOI : 10.1097/CAD.0b013e3280109424

J. Xia, L. Chen, W. Jian, K. Wang, Y. Yang et al., MicroRNA-362 induces cell proliferation and apoptosis resistance in gastric cancer by activation of NF-??B signaling, Journal of Translational Medicine, vol.12, issue.1, p.33, 2014.
DOI : 10.1172/JCI11914

URL : https://translational-medicine.biomedcentral.com/track/pdf/10.1186/1479-5876-12-33?site=translational-medicine.biomedcentral.com

Y. Yang and J. Zhou, CYLD ??? a deubiquitylase that acts to fine-tune microtubule properties and functions, Journal of Cell Science, vol.129, issue.12, pp.2289-2295, 2016.
DOI : 10.1242/jcs.183319

URL : http://jcs.biologists.org/content/joces/129/12/2289.full.pdf

K. Zhang and L. Guo, MiR-767 promoted cell proliferation in human melanoma by suppressing CYLD expression, Gene, vol.641, pp.272-278, 2018.
DOI : 10.1016/j.gene.2017.10.055

H. Qiu, S. Yuan, and X. Lu, miR-186 suppressed CYLD expression and promoted cell proliferation in human melanoma, Oncology Letters, vol.12, issue.4, pp.2301-2306, 2016.
DOI : 10.3892/ol.2016.5002

URL : http://www.spandidos-publications.com/ol/12/4/2301/download

M. Garofalo, C. Quintavalle, G. Romano, C. Croce, and G. Condorelli, miR221/222 in Cancer: Their Role in Tumor Progression and Response to Therapy, Current Molecular Medicine, vol.12, issue.1, pp.27-33, 2012.
DOI : 10.2174/156652412798376170

URL : http://europepmc.org/articles/pmc3673714?pdf=render

F. Felicetti, M. Errico, L. Bottero, P. Segnalini, A. Stoppacciaro et al., The Promyelocytic Leukemia Zinc Finger-MicroRNA-221/-222 Pathway Controls Melanoma Progression through Multiple Oncogenic Mechanisms, Cancer Research, vol.68, issue.8, pp.2745-2754, 2008.
DOI : 10.1158/0008-5472.CAN-07-2538

URL : http://cancerres.aacrjournals.org/content/canres/68/8/2745.full.pdf

M. Errico, F. Felicetti, L. Bottero, G. Mattia, A. Boe et al., The abrogation of the HOXB7/PBX2 complex induces apoptosis in melanoma through the miR-221&222-c-FOS pathway, International Journal of Cancer, vol.18, issue.4, pp.879-892, 2013.
DOI : 10.1038/nm.2577

F. Felicetti, D. Feo, A. Coscia, C. Puglisi, R. Pedini et al., Exosome-mediated transfer of miR-222 is sufficient to increase tumor malignancy in melanoma, Journal of Translational Medicine, vol.281, issue.16, p.56, 2016.
DOI : 10.1074/jbc.M600477200

N. Ni, H. Song, X. Wang, X. Xu, Y. Jiang et al., Up-regulation of long noncoding RNA FALEC predicts poor prognosis and promotes melanoma cell proliferation through epigenetically silencing p21, Biomedicine & Pharmacotherapy, vol.96, pp.1371-1379, 2017.
DOI : 10.1016/j.biopha.2017.11.060

URL : https://doi.org/10.1016/j.biopha.2017.11.060

L. Chen, D. Ma, Y. Li, X. Li, L. Zhao et al., Effect of long non-coding RNA PVT1 on cell proliferation and migration in melanoma, International Journal of Molecular Medicine, vol.41, pp.1275-1282, 2018.
DOI : 10.3892/ijmm.2017.3335

URL : http://www.spandidos-publications.com/ijmm/41/3/1275/download

B. Wang, H. Ding, and G. Ma, Long Noncoding RNA PVT1 Promotes Melanoma Progression Via Endogenous Sponging MiR-26b, Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics, 2017.
DOI : 10.3727/096504017X14920318811730

X. Chen, G. Gao, S. Liu, L. Yu, D. Yan et al., Long Noncoding RNA PVT1 as a Novel Diagnostic Biomarker and Therapeutic Target for Melanoma, BioMed Research International, vol.8, issue.11, p.7038579, 2017.
DOI : 10.1016/j.bbrc.2015.04.121

URL : http://doi.org/10.1155/2017/7038579

Y. Wei, Q. Sun, L. Zhao, J. Wu, X. Chen et al., LncRNA UCA1-miR-507-FOXM1 axis is involved in cell proliferation, invasion and G0/G1 cell cycle arrest in melanoma, Medical Oncology, vol.10, issue.2, p.88, 2016.
DOI : 10.1080/15592294.2014.1003746

A. Dar, S. Majid, D. De-semir, M. Nosrati, V. Bezrookove et al., miRNA-205 Suppresses Melanoma Cell Proliferation and Induces Senescence via Regulation of E2F1 Protein, Journal of Biological Chemistry, vol.25, issue.19, pp.16606-16614, 2011.
DOI : 10.1002/ijc.11552

URL : http://www.jbc.org/content/286/19/16606.full.pdf

L. Zehavi, H. Schayek, J. Jacob-hirsch, Y. Sidi, R. Leibowitz-amit et al., MiR-377 targets E2F3 and alters the NF-kB signaling pathway through MAP3K7 in malignant melanoma, Molecular Cancer, vol.2, issue.1, p.68, 2015.
DOI : 10.1089/adt.2004.2.363

URL : https://molecular-cancer.biomedcentral.com/track/pdf/10.1186/s12943-015-0338-9?site=molecular-cancer.biomedcentral.com

P. Kumar, U. Emechebe, R. Smith, S. Franklin, B. Moore et al., Author response image 1. Author response, eLife, vol.193, 2014.
DOI : 10.7554/eLife.02805.035

M. Montes, M. Nielsen, G. Maglieri, A. Jacobsen, J. Hojfeldt et al., The lncRNA MIR31HG regulates p16INK4A expression to modulate senescence, Nature Communications, vol.4, issue.1, p.6967, 2015.
DOI : 10.1371/journal.pgen.1000045

URL : http://www.nature.com/articles/ncomms7967.pdf

K. Yap, S. Li, A. Munoz-cabello, S. Raguz, L. Zeng et al., Molecular Interplay of the Noncoding RNA ANRIL and Methylated Histone H3 Lysine 27 by Polycomb CBX7 in Transcriptional Silencing of INK4a, Molecular Cell, vol.38, issue.5, pp.662-674, 2010.
DOI : 10.1016/j.molcel.2010.03.021

M. Cunnington, S. Koref, M. Mayosi, B. Burn, J. Keavney et al., Chromosome 9p21 SNPs Associated with Multiple Disease Phenotypes Correlate with ANRIL Expression, PLoS Genetics, vol.6, issue.4, p.1000899, 2010.
DOI : 10.1371/journal.pgen.1000899.s015

URL : https://doi.org/10.1371/journal.pgen.1000899

S. Xu, H. Wang, H. Pan, Y. Shi, T. Li et al., ANRIL lncRNA triggers efficient therapeutic efficacy by reprogramming the aberrant INK4-hub in melanoma, Cancer Letters, vol.381, issue.1, pp.41-48, 2016.
DOI : 10.1016/j.canlet.2016.07.024

C. Luo, P. Tetteh, P. Merz, E. Dickes, A. Abukiwan et al., miR-137 Inhibits the Invasion of Melanoma Cells through Downregulation of Multiple Oncogenic Target Genes, Journal of Investigative Dermatology, vol.133, issue.3, pp.768-775, 2013.
DOI : 10.1038/jid.2012.357

P. Bennett, L. Bemis, D. Norris, and Y. Shellman, miR in melanoma development: miRNAs and acquired hallmarks of cancer in melanoma, Physiological Genomics, vol.4, issue.22, pp.1049-1059, 2013.
DOI : 10.1371/journal.pone.0047137

N. Li, Low Expression of Mir-137 Predicts Poor Prognosis in Cutaneous Melanoma Patients, Medical Science Monitor, vol.22, pp.140-144, 2016.
DOI : 10.12659/MSM.895207

URL : http://europepmc.org/articles/pmc4716707?pdf=render

M. Rodriguez, E. Aladowicz, L. Lanfrancone, and C. Goding, Tbx3 Represses E-Cadherin Expression and Enhances Melanoma Invasiveness, Cancer Research, vol.68, issue.19, pp.7872-7881, 2008.
DOI : 10.1158/0008-5472.CAN-08-0301

URL : http://cancerres.aacrjournals.org/content/canres/68/19/7872.full.pdf

D. Muller and A. Bosserhoff, Integrin ??3 expression is regulated by let-7a miRNA in malignant melanoma, Oncogene, vol.13, issue.52, pp.6698-6706, 2008.
DOI : 10.4161/cc.6.21.4845

L. Chen, H. Yang, Y. Xiao, X. Tang, Y. Li et al., Lentiviral-mediated overexpression of long non-coding RNA GAS5 reduces invasion by mediating MMP2 expression and activity in human melanoma cells, International Journal of Oncology, vol.48, issue.4, pp.1509-1518, 2016.
DOI : 10.3892/ijo.2016.3377

D. Bian, W. Shi, Y. Shao, P. Li, and G. Song, Long non-coding RNA GAS5 inhibits tumorigenesis via miR- 137 in melanoma, Am J Transl Res, vol.9, pp.1509-1520, 2017.

M. Del-campo, S. Latchana, N. Levine, K. Grignol, V. Fairchild et al., MiR-21 enhances melanoma invasiveness via inhibition of tissue inhibitor of metalloproteinases 3 expression: in vivo effects of MiR-21 inhibitor, PLoS One, vol.10, p.115919, 2015.

K. Schmidt, C. Joyce, F. Buquicchio, A. Brown, J. Ritz et al., The lncRNA SLNCR1 Mediates Melanoma Invasion through a Conserved SRA1-like Region, Cell Reports, vol.15, issue.9, pp.2025-2037, 2016.
DOI : 10.1016/j.celrep.2016.04.018

URL : https://doi.org/10.1016/j.celrep.2016.04.018

Y. Tian, X. Zhang, Y. Hao, Z. Fang, and Y. He, Potential roles of abnormally expressed long noncoding RNA UCA1 and Malat-1 in metastasis of melanoma, Melanoma Research, vol.24, issue.4, pp.335-341, 2014.
DOI : 10.1097/CMR.0000000000000080

W. Luan, L. Li, Y. Shi, X. Bu, Y. Xia et al., Long non-coding RNA MALAT1 acts as a competing endogenous RNA to promote malignant melanoma growth and metastasis by sponging miR-22, Oncotarget, vol.7, issue.39, pp.63901-63912, 2016.
DOI : 10.18632/oncotarget.11564

URL : http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=11564&path%5B%5D=38476

Y. Sun, H. Cheng, G. Wang, G. Yu, D. Zhang et al., Deregulation of miR-183 promotes melanoma development via lncRNA MALAT1 regulation and ITGB1 signal activation, Oncotarget, vol.8, issue.2, pp.3509-3518, 2017.
DOI : 10.18632/oncotarget.13862

URL : http://www.impactjournals.com/oncotarget/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=13862&path%5B%5D=44158

W. Luan, R. Li, L. Liu, X. Ni, Y. Shi et al., Long non-coding RNA HOTAIR acts as a competing endogenous RNA to promote malignant melanoma progression by sponging miR-152-3p, Oncotarget, vol.8, issue.49, pp.85401-85414, 2017.
DOI : 10.18632/oncotarget.19910

URL : http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=download&path%5B%5D=19910&path%5B%5D=63544

L. Wu, P. Murat, D. Matak-vinkovic, A. Murrell, and S. Balasubramanian, Binding Interactions between Long Noncoding RNA HOTAIR and PRC2 Proteins, Biochemistry, vol.52, issue.52, pp.9519-9527, 2013.
DOI : 10.1021/bi401085h

URL : https://doi.org/10.1021/bi401085h

M. Cantile, G. Scognamiglio, L. Marra, G. Aquino, C. Botti et al., HOTAIR role in melanoma progression and its identification in the blood of patients with advanced disease, Journal of Cellular Physiology, vol.2013, issue.12, pp.3422-3432, 2017.
DOI : 10.1155/2013/136106

H. Hwang, L. Baxter, S. Loftus, J. Cronin, N. Trivedi et al., Distinct microRNA expression signatures are associated with melanoma subtypes and are regulated by HIF1A, Pigment Cell & Melanoma Research, vol.133, issue.5, pp.777-787, 2014.
DOI : 10.1038/jid.2013.115

URL : http://europepmc.org/articles/pmc4150815?pdf=render

L. Liu, C. Li, Q. Chen, Y. Jing, R. Carpenter et al., MiR-21 Induced Angiogenesis through AKT and ERK Activation and HIF-1?? Expression, PLoS ONE, vol.209, issue.4, p.19139, 2011.
DOI : 10.1371/journal.pone.0019139.g006

URL : https://doi.org/10.1371/journal.pone.0019139

J. Qi, Q. Ebrahem, N. Moore, G. Murphy, L. Claesson-welsh et al., A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2, Nature Medicine, vol.47, issue.4, pp.407-415, 2003.
DOI : 10.1006/mvre.1994.1003

G. Ghosh, I. Subramanian, N. Adhikari, X. Zhang, H. Joshi et al., Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF-?? isoforms and promotes angiogenesis, Journal of Clinical Investigation, vol.120, issue.11, pp.4141-4154, 2010.
DOI : 10.1172/JCI42980DS1

URL : http://www.jci.org/articles/view/42980/files/pdf

J. Long, Q. Menggen, Q. Wuren, Q. Shi, and X. Pi, MiR-219-5p Inhibits the Growth and Metastasis of Malignant Melanoma by Targeting BCL-2, BioMed Research International, vol.7, issue.9, p.9032502, 2017.
DOI : 10.1158/1078-0432.CCR-08-0144

URL : http://downloads.hindawi.com/journals/bmri/2017/9032502.pdf

L. Xia, D. Zhang, R. Du, Y. Pan, L. Zhao et al., miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells, International Journal of Cancer, vol.12, issue.Suppl, pp.372-379, 2008.
DOI : 10.1007/s10495-007-0145-x

URL : http://onlinelibrary.wiley.com/doi/10.1002/ijc.23501/pdf

E. Friedman, S. Shang, E. De-miera, J. Fog, M. Teilum et al., Serum microRNAs as biomarkers for recurrence in melanoma, Journal of Translational Medicine, vol.10, issue.1, p.155, 2012.
DOI : 10.1200/JCO.2005.02.8712

URL : https://translational-medicine.biomedcentral.com/track/pdf/10.1186/1479-5876-10-155?site=translational-medicine.biomedcentral.com

M. Du, Z. Zhang, and T. Gao, Piceatannol induced apoptosis through up-regulation of microRNA-181a in melanoma cells, Biological Research, vol.132, issue.7, p.36, 2017.
DOI : 10.1038/jid.2011.451

URL : https://biolres.biomedcentral.com/track/pdf/10.1186/s40659-017-0141-8?site=biolres.biomedcentral.com

T. Kino, D. Hurt, T. Ichijo, N. Nader, and G. Chrousos, Noncoding RNA Gas5 Is a Growth Arrest- and Starvation-Associated Repressor of the Glucocorticoid Receptor, Science Signaling, vol.3, issue.107, p.8, 2010.
DOI : 10.1126/scisignal.2000568

URL : http://europepmc.org/articles/pmc2819218?pdf=render

D. Khaitan, M. Dinger, J. Mazar, J. Crawford, M. Smith et al., The Melanoma-Upregulated Long Noncoding RNA SPRY4-IT1 Modulates Apoptosis and Invasion, Cancer Research, vol.71, issue.11, pp.3852-3862, 2011.
DOI : 10.1158/0008-5472.CAN-10-4460

URL : http://cancerres.aacrjournals.org/content/canres/71/11/3852.full.pdf

T. Liu, S. Shen, J. Xiong, Y. Xu, H. Zhang et al., Clinical significance of long noncoding RNA SPRY4-IT1 in melanoma patients, FEBS Open Bio, vol.31, issue.13 Suppl, pp.147-154, 2016.
DOI : 10.1200/JCO.2012.41.5984

URL : http://onlinelibrary.wiley.com/doi/10.1002/2211-5463.12030/pdf

J. Mazar, W. Zhao, A. Khalil, B. Lee, J. Shelley et al., The functional characterization of long noncoding RNA <i>SPRY4-IT1</i> in human melanoma cells, Oncotarget, vol.5, issue.19, pp.8959-8969, 2014.
DOI : 10.18632/oncotarget.1863

E. Londin, P. Loher, A. Telonis, K. Quann, P. Clark et al., Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs, Proceedings of the National Academy of Sciences, vol.41, issue.10, pp.1106-1115, 2015.
DOI : 10.1038/nsmb.2347

Q. Ning, Y. Li, Z. Wang, S. Zhou, H. Sun et al., The Evolution and Expression Pattern of Human Overlapping lncRNA and Protein-coding Gene Pairs, Scientific Reports, vol.23, p.42775, 2017.
DOI : 10.1093/molbev/msj054

URL : http://www.nature.com/articles/srep42775.pdf

E. Capobianco, C. Valdes, S. Sarti, Z. Jiang, L. Poliseno et al., Ensemble Modeling Approach Targeting Heterogeneous RNA-Seq data: Application to, Melanoma Pseudogenes. Sci Rep, vol.7, p.17344, 2017.
DOI : 10.1038/s41598-017-17337-7

URL : https://www.nature.com/articles/s41598-017-17337-7.pdf

H. Zhao, Y. Li, S. Wang, Y. Yang, J. Wang et al., Whole transcriptome RNA-seq analysis: tumorigenesis and metastasis of melanoma, Gene, vol.548, issue.2, pp.234-243, 2014.
DOI : 10.1016/j.gene.2014.07.038

S. Kalyana-sundaram, C. Kumar-sinha, S. Shankar, D. Robinson, Y. Wu et al., Expressed Pseudogenes in the Transcriptional Landscape of Human Cancers, Cell, vol.149, issue.7, pp.1622-1634, 2012.
DOI : 10.1016/j.cell.2012.04.041

URL : https://doi.org/10.1016/j.cell.2012.04.041

M. Milligan, E. Harvey, A. Yu, A. Morgan, D. Smith et al., Global Intersection of Long Non-Coding RNAs with Processed and Unprocessed Pseudogenes in the Human Genome, Frontiers in Genetics, vol.22, issue.476, p.26, 2016.
DOI : 10.1093/hmg/ddt142