L. Pasteur, Méthode pour prévenir la rage après morsure, Comptes rendus Hebd. Des. séances De. l'Académie Des. Sci, vol.101, pp.765-774, 1885.

A. Pinheiro, Molecular bases of genetic diversity and evolution of the immunoglobulin heavy chain variable region (IGHV) gene locus in leporids, Immunogenetics, vol.77, issue.4, pp.397-408, 2011.
DOI : 10.1073/pnas.77.4.2158

A. Pinheiro, An overview of the lagomorph immune system and its genetic diversity, Immunogenetics, vol.88, issue.Pt 1, pp.83-107, 2016.
DOI : 10.1016/S0168-1702(02)00118-1

R. G. Mage, A. Pinheiro, A. Lemos-de-matos, and P. J. Esteves, The Immune System of Lagomorphs, Encyclopedia of immunobiology, vol.1, pp.515-525, 2016.
DOI : 10.1016/B978-0-12-374279-7.12016-8

T. H. Burkholder, G. F. Linton, J. Hoyt, and R. Young, The rabbit as an experimental model The laboratory rabbit, guinea pig, hamster, and other rodents, pp.529-560, 2012.

K. Mullane and M. Williams, Animal models of asthma: Reprise or reboot?, Biochemical Pharmacology, vol.87, issue.1, pp.131-139, 2014.
DOI : 10.1016/j.bcp.2013.06.026

D. R. Webb, Animal models of human disease: Inflammation, Biochemical Pharmacology, vol.87, issue.1, pp.121-130, 2014.
DOI : 10.1016/j.bcp.2013.06.014

D. Graur, L. Duret, and M. Gouy, Phylogenetic position of the order Lagomorpha (rabbits, hares and allies), Nature, vol.379, issue.6563, pp.333-335, 1996.
DOI : 10.1038/379333a0

URL : https://hal.archives-ouvertes.fr/hal-00435019

F. Neves, Genetic characterization of interleukins (IL-1??, IL-1??, IL-2, IL-4, IL-8, IL-10, IL-12A, IL-12B, IL-15 and IL-18) with relevant biological roles in lagomorphs, Innate Immunity, vol.3, issue.8, pp.787-801, 2015.
DOI : 10.1093/oxfordjournals.molbev.a025773

H. D. Perkins, B. H. Van-leeuwen, C. M. Hardy, and P. J. Kerr, THE COMPLETE cDNA SEQUENCES OF IL-2, IL-4, IL-6 AND IL-10 FROM THE EUROPEAN RABBIT (ORYCTOLAGUS CUNICULUS), Cytokine, vol.12, issue.6, pp.555-565, 2000.
DOI : 10.1006/cyto.1999.0658

J. James, Forced Expression of ??-Myosin Heavy Chain in the Rabbit Ventricle Results in Cardioprotection Under Cardiomyopathic Conditions, Circulation, vol.111, issue.18, pp.2339-2346, 2005.
DOI : 10.1161/01.CIR.0000164233.09448.B1

J. Zschaler, D. Schlorke, and J. Arnhold, Differences in innate immune response between man and mouse, Critical Reviews in Immunology, vol.34, pp.433-454, 2014.
DOI : 10.1615/CritRevImmunol.2014011600

J. Fan, Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine, Pharmacology & Therapeutics, vol.146, pp.104-119, 2015.
DOI : 10.1016/j.pharmthera.2014.09.009

URL : http://europepmc.org/articles/pmc4304984?pdf=render

J. Tian, A Novel Model of Atherosclerosis in Rabbits Using Injury to Arterial Walls Induced by Ferric Chloride as Evaluated by Optical Coherence Tomography as well as Intravascular Ultrasound and Histology, Journal of Biomedicine and Biotechnology, vol.4, issue.3, p.121867, 2012.
DOI : 10.1258/002367704323133628

A. Jiménez-garcía, Intestinal wall damage in simple ileus in rabbits: immune-modulator role of somatostatin, Hepatogastroenterology, vol.51, pp.1030-1036, 2004.

B. Fischer, P. Chavatte-palmer, C. Viebahn, N. Santos, A. Duranthon et al., Rabbit as a reproductive model for human health, Reproduction, vol.117, issue.1, pp.1-10, 2012.
DOI : 10.1055/s-0028-1102918

URL : https://hal.archives-ouvertes.fr/hal-01019868

R. G. Mage and G. Rai, A rabbit model of systemic lupus erythematosus, useful for studies of neuropsychiatric SLE Systemic Lupus Erythematosus, pp.201-217, 2012.

G. Desando, Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model, Arthritis Research & Therapy, vol.15, issue.1, p.22, 2013.
DOI : 10.1517/14712590903039684

URL : https://arthritis-research.biomedcentral.com/track/pdf/10.1186/ar4156?site=arthritis-research.biomedcentral.com

S. J. Kang and H. Grossniklaus, Rabbit Model of Retinoblastoma, Journal of Biomedicine and Biotechnology, vol.3, issue.7, p.394730, 2011.
DOI : 10.1101/gad.1203304

URL : http://doi.org/10.1155/2011/394730

D. S. Woodruff-pak, A. Agelan, and L. Del-valle, A Rabbit Model of Alzheimer's Disease: Valid at Neuropathological, Cognitive, and Therapeutic Levels, Journal of Alzheimer's Disease, vol.11, issue.3, pp.371-383, 2007.
DOI : 10.3233/JAD-2007-11313

K. J. Rhee, Positive selection of the peripheral B cell repertoire in gut-associated lymphoid tissues, The Journal of Experimental Medicine, vol.162, issue.1, pp.55-62, 2005.
DOI : 10.1016/S1074-7613(02)00270-4

R. G. Mage, D. Lanning, and K. L. Knight, B cell and antibody repertoire development in rabbits: The requirement of gut-associated lymphoid tissues, Developmental & Comparative Immunology, vol.30, issue.1-2, pp.137-153, 2006.
DOI : 10.1016/j.dci.2005.06.017

R. C. Burnett, W. C. Hanly, S. K. Zhai, and K. L. Knight, The IgA heavy-chain gene family in rabbit: cloning and sequence analysis of 13 C alpha genes, EMBO J, vol.8, pp.4041-4047, 1989.

L. Abi-rached, K. Dorighi, P. J. Norman, M. Yawata, and P. Parham, Episodes of Natural Selection Shaped the Interactions of IgA-Fc with Fc??RI and Bacterial Decoy Proteins, The Journal of Immunology, vol.178, issue.12, pp.7943-7954, 2007.
DOI : 10.4049/jimmunol.178.12.7943

A. Pinheiro, J. M. Woof, L. Abi-rached, P. Parham, and P. J. Esteves, Computational Analyses of an Evolutionary Arms Race between Mammalian Immunity Mediated by Immunoglobulin A and Its Subversion by Bacterial Pathogens, PLoS ONE, vol.286, issue.5, p.73934, 2013.
DOI : 10.1371/journal.pone.0073934.t004

URL : https://doi.org/10.1371/journal.pone.0073934

E. D. Deeks and G. M. Keating, Rabbit Antithymocyte Globulin (Thymoglobulin??), Drugs, vol.9, issue.2, pp.1483-1512, 2009.
DOI : 10.2165/00003495-200969110-00007

T. Flisikowska, Efficient Immunoglobulin Gene Disruption and Targeted Replacement in Rabbit Using Zinc Finger Nucleases, PLoS ONE, vol.26, issue.1, p.21045, 2011.
DOI : 10.1371/journal.pone.0021045.s005

URL : https://doi.org/10.1371/journal.pone.0021045

J. Weber, H. Peng, and C. Rader, From rabbit antibody repertoires to rabbit monoclonal antibodies, Experimental & Molecular Medicine, vol.373, issue.3, p.305, 2017.
DOI : 10.1016/S0140-6736(09)60251-8

URL : http://www.nature.com/emm/journal/v49/n3/pdf/emm201723a.pdf

Y. F. Zhang and M. Ho, Humanization of rabbit monoclonal antibodies via grafting combined Kabat/IMGT/Paratome complementarity-determining regions: Rationale and examples, mAbs, vol.9, issue.3, pp.419-429, 2017.
DOI : 10.1002/prot.24545

URL : http://europepmc.org/articles/pmc5384799?pdf=render

C. E. Kummerfeldt, Raxibacumab: potential role in the treatment of inhalational anthrax, Infection and Drug Resistance, vol.7, pp.101-109, 2014.
DOI : 10.2147/IDR.S47305

URL : https://www.dovepress.com/getfile.php?fileID=19807

S. L. Greig, Obiltoxaximab: First Global Approval, Drugs, vol.59, issue.4, pp.823-830, 2016.
DOI : 10.1128/AAC.04593-14

C. Carmo, P. J. Esteves, N. Ferrand, and W. Van-der-loo, Genetic variation at chemokine receptor CCR5 in leporids: alteration at the 2nd extracellular domain by gene conversion with CCR2 in Oryctolagus, but not in Sylvilagus and Lepus species, Immunogenetics, vol.77, issue.5446, pp.494-501, 2006.
DOI : 10.7589/0090-3558-8.4.327

J. Abrantes, A shared unusual genetic change at the chemokine receptor type 5 between Oryctolagus, Bunolagus and Pentalagus, Conservation Genetics, vol.88, issue.1, pp.325-330, 2011.
DOI : 10.7589/0090-3558-36.3.580

G. Lau, J. Labrecque, M. Metz, R. Vaz, and S. P. Fricker, Specificity for a CCR5 Inhibitor Is Conferred by a Single Amino Acid Residue, Journal of Biological Chemistry, vol.341, issue.17, pp.11041-11051, 2015.
DOI : 10.4155/fmc.13.194

URL : http://www.jbc.org/content/290/17/11041.full.pdf

P. Proost, Posttranslational modifications affect the activity of the human monocyte chemotactic proteins MCP-1 and MCP-2: identification of MCP-2 (6?76) as a natural chemokine inhibitor, J. Immunol, vol.160, pp.4034-4041, 1998.

W. Van-der-loo, S. Afonso, A. L. De-matos, J. Abrantes, and P. J. Esteves, Pseudogenization of the MCP-2/CCL8 chemokine gene in European rabbit (genus Oryctolagus), but not in species of Cottontail rabbit (Sylvilagus) and Hare (Lepus), BMC Genetics, vol.13, issue.1, p.72, 2012.
DOI : 10.1093/nar/gkh361

URL : https://hal.archives-ouvertes.fr/inserm-00759272

W. Van-der-loo, Adaptive Gene Loss? Tracing Back the Pseudogenization of the Rabbit CCL8 Chemokine, Journal of Molecular Evolution, vol.77, issue.2, pp.12-25, 2016.
DOI : 10.1266/ggs.77.107

J. Abrantes, W. Van-der-loo, L. Pendu, J. Esteves, and P. J. , Rabbit haemorrhagic disease (RHD) and rabbit haemorrhagic disease virus (RHDV): a review, Veterinary Research, vol.43, issue.1, p.12, 2012.
DOI : 10.1016/S0168-1702(98)00144-0

URL : https://hal.archives-ouvertes.fr/inserm-00689849

P. J. Kerr, Myxomatosis in Australia and Europe: A model for emerging infectious diseases, Antiviral Research, vol.93, issue.3, pp.387-415, 2012.
DOI : 10.1016/j.antiviral.2012.01.009

P. J. Kerr, Myxoma Virus and the Leporipoxviruses: An Evolutionary Paradigm, Viruses, vol.60, issue.3, pp.1020-1061, 2015.
DOI : 10.1016/j.tim.2014.10.004

URL : http://www.mdpi.com/1999-4915/7/3/1020/pdf

L. Gall-reculé and G. , Detection of a new variant of rabbit haemorrhagic disease virus in France, Veterinary Record, vol.168, issue.5, pp.137-138, 2011.
DOI : 10.1136/vr.d697

A. M. Lopes, Full genomic analysis of new variant rabbit hemorrhagic disease virus revealed multiple recombination events, Journal of General Virology, vol.70, issue.6, pp.1309-1319, 2015.
DOI : 10.1016/j.virol.2008.11.004

URL : http://jgv.microbiologyresearch.org/deliver/fulltext/jgv/96/6/1309_vir000070.pdf?itemId=/content/journal/jgv/10.1099/vir.0.000070&mimeType=pdf&isFastTrackArticle=

W. M. Chan, Myxoma and Vaccinia Viruses Bind Differentially to Human Leukocytes, Journal of Virology, vol.87, issue.8, pp.4445-4460, 2013.
DOI : 10.1128/JVI.03488-12

URL : http://jvi.asm.org/content/87/8/4445.full.pdf

W. M. Chan and G. Mcfadden, Oncolytic Poxviruses, Annual Review of Virology, vol.1, issue.1, pp.119-141, 2014.
DOI : 10.1146/annurev-virology-031413-085442

C. L. Lilly, Ex??Vivo Oncolytic Virotherapy with Myxoma Virus Arms Multiple Allogeneic Bone Marrow Transplant Leukocytes to Enhance Graft versus Tumor, Molecular Therapy - Oncolytics, vol.4, pp.31-40, 2017.
DOI : 10.1016/j.omto.2016.12.002

URL : https://doi.org/10.1016/j.omto.2016.12.002

N. Ruvoën-clouet, J. P. Ganière, G. André-fontaine, D. Blanchard, and J. Le-pendu, Binding of Rabbit Hemorrhagic Disease Virus to Antigens of the ABH Histo-Blood Group Family, Journal of Virology, vol.74, issue.24, pp.11950-11954, 2000.
DOI : 10.1128/JVI.74.24.11950-11954.2000

S. M. Ahmed, Global prevalence of norovirus in cases of gastroenteritis: a systematic review and meta-analysis, The Lancet Infectious Diseases, vol.14, issue.8, pp.725-730, 2014.
DOI : 10.1016/S1473-3099(14)70767-4

M. Tan and X. Jiang, Histo-blood group antigens: a common niche for norovirus and rotavirus, Expert Reviews in Molecular Medicine, vol.4, p.5, 2014.
DOI : 10.1128/JVI.79.22.14017-14030.2005

N. Ruvöen-clouet, G. Belliot, and J. Le-pendu, Noroviruses and histo-blood groups: the impact of common host genetic polymorphisms on virus transmission and evolution, Reviews in Medical Virology, vol.19, issue.7, pp.355-366, 2013.
DOI : 10.1093/glycob/cwn139

L. Pendu, J. Nystrom, K. Ruvoen-clouet, and N. , Host???pathogen co-evolution and glycan interactions, Current Opinion in Virology, vol.7, pp.88-94, 2014.
DOI : 10.1016/j.coviro.2014.06.001

K. Nyström, Histo-Blood Group Antigens Act as Attachment Factors of Rabbit Hemorrhagic Disease Virus Infection in a Virus Strain-Dependent Manner, PLoS Pathogens, vol.24, issue.Pt 4, p.1002188, 2011.
DOI : 10.1371/journal.ppat.1002188.s010

M. J. Tuñón, M. Alvarez, J. M. Culebras, and J. González-gallego, An overview of animal models for investigating the pathogenesis and therapeutic strategies in acute hepatic failure, World Journal of Gastroenterology, vol.15, issue.25, pp.3086-3098, 2009.
DOI : 10.3748/wjg.15.3086

D. Vallejo, Autophagic response in the Rabbit Hemorrhagic Disease, an animal model of virally-induced fulminant hepatic failure, Veterinary Research, vol.45, issue.1, p.15, 2014.
DOI : 10.1074/jbc.M113.518134

URL : https://hal.archives-ouvertes.fr/hal-01290531

M. J. Tuñón, Cardiotrophin-1 Promotes a High Survival Rate in Rabbits with Lethal Fulminant Hepatitis of Viral Origin, Journal of Virology, vol.85, issue.24, pp.13124-13132, 2011.
DOI : 10.1128/JVI.05725-11

L. Booth, AR-12 Inhibits Multiple Chaperones Concomitant With Stimulating Autophagosome Formation Collectively Preventing Virus Replication, Journal of Cellular Physiology, vol.64, issue.10, pp.2286-2302, 2016.
DOI : 10.1158/0008-5472.CAN-03-4063

B. San-miguel, M. Alvarez, J. M. Culebras, J. González-gallego, and M. J. Tuñón, N-acetyl-cysteine protects liver from apoptotic death in an animal model of fulminant hepatic failure, Apoptosis, vol.20, issue.11, pp.1945-1957, 2006.
DOI : 10.1136/vr.137.7.158

I. Crespo, Melatonin prevents the decreased activity of antioxidant enzymes and activates nuclear erythroid 2-related factor 2 signaling in an animal model of fulminant hepatic failure of viral origin, Journal of Pineal Research, vol.59, pp.193-200, 2010.
DOI : 10.1016/j.jhep.2005.04.019

I. Crespo, Melatonin inhibits the sphingosine kinase 1/sphingosine-1-phosphate signaling pathway in rabbits with fulminant hepatitis of viral origin, Journal of Pineal Research, vol.57, issue.451, pp.168-176, 2016.
DOI : 10.1111/jpi.12186

L. Gall-reculé and G. , Emergence of a new lagovirus related to rabbit haemorrhagic disease virus, Veterinary Research, vol.44, issue.1, p.81, 2013.
DOI : 10.1186/1471-2148-10-347

H. J. Nichols and W. Hough, DEMONSTRATION OF SPIROCHAETA PALLIDA IN THE CEREBROSPINAL FLUID, Journal of the American Medical Association, vol.60, issue.2, pp.108-110, 1913.
DOI : 10.1001/jama.1913.04340020016005

H. J. Magnuson, H. Eagle, and R. Fleischman, The minimal infectious inoculum of Spirochaeta pallida (Nichols Strain), and a consideration of its rate of multiplication in vivo, Am. J. Syph, vol.32, pp.1-18, 1948.

S. Sell and S. J. Norris, The biology, pathology, and immunology of syphilis, Int. Rev. Exp. Pathol, vol.24, pp.203-276, 1983.

K. V. Lithgow, A defined syphilis vaccine candidate inhibits dissemination of Treponema pallidum subspecies pallidum, Nature Communications, vol.60, p.14273, 2017.
DOI : 10.1001/jama.1913.04340020016005

URL : http://www.nature.com/articles/ncomms14273.pdf

T. J. Fitzgerald, Experimental congenital syphilis in rabbits, Canadian Journal of Microbiology, vol.31, issue.9, pp.757-762, 1985.
DOI : 10.1139/m85-142

M. K. Froberg, T. J. Fitzgerald, T. R. Hamilton, B. Hamilton, and M. Zarabi, Pathology of congenital syphilis in rabbits, Infect. Immun, vol.61, pp.4743-4749, 1993.

L. C. Tantalo, S. A. Lukehart, and C. M. Marra, Strain???Specific Differences in Neuroinvasion and Clinical Phenotype in a Rabbit Model, The Journal of Infectious Diseases, vol.191, issue.1, pp.75-80, 2005.
DOI : 10.1086/426510

URL : https://academic.oup.com/jid/article-pdf/191/1/75/2421861/191-1-75.pdf

R. F. Schell, J. L. Lefrock, J. K. Chan, and O. Bagasra, LSH hamster model of syphilitic infection, Infect. Immun, vol.28, pp.909-913, 1980.
DOI : 10.1007/978-1-4757-0495-2_26

K. Wicher, J. N. Miller, A. W. Urquhart, and V. Wicher, Treponema pallidumimmobilizing antibodies in guinea pig experimental syphilis, Infect. Immun, vol.57, pp.2900-2902, 1989.

B. Gueft and P. Rosahn, Experimental mouse syphilis, a critical review of the literature, Am. J. Syph, vol.32, pp.59-88, 1948.

L. Giacani, Antigenic Variation in Treponema pallidum: TprK Sequence Diversity Accumulates in Response to Immune Pressure during Experimental Syphilis, The Journal of Immunology, vol.184, issue.7, pp.3822-3829, 2010.
DOI : 10.4049/jimmunol.0902788

URL : http://www.jimmunol.org/content/jimmunol/184/7/3822.full.pdf

B. J. Molini, Macrolide Resistance in Treponema pallidum Correlates With 23S rDNA Mutations in Recently Isolated Clinical Strains, Sexually Transmitted Diseases, vol.43, issue.9, pp.579-583, 2016.
DOI : 10.1097/OLQ.0000000000000486

URL : http://pdfs.journals.lww.com/stdjournal/2016/09000/Macrolide_Resistance_in_Treponema_pallidum.9.pdf?token=method|ExpireAbsolute;source|Journals;ttl|1504254568006;payload|mY8D3u1TCCsNvP5E421JYK6N6XICDamxByyYpaNzk7FKjTaa1Yz22MivkHZqjGP4kdS2v0J76WGAnHACH69s21Csk0OpQi3YbjEMdSoz2UhVybFqQxA7lKwSUlA502zQZr96TQRwhVlocEp/sJ586aVbcBFlltKNKo+tbuMfL73hiPqJliudqs17cHeLcLbV/CqjlP3IO0jGHlHQtJWcICDdAyGJMnpi6RlbEJaRheGeh5z5uvqz3FLHgPKVXJzd55NwvgNDyHIJ2wZu+16mrx/bPMa1EUaqKcf2c/pnM+k=;hash|uDLWcQmN+N9aistOTPoFRg==

C. E. Cameron and S. A. Lukehart, Current status of syphilis vaccine development: Need, challenges, prospects, Vaccine, vol.32, issue.14, pp.1602-1609, 2014.
DOI : 10.1016/j.vaccine.2013.09.053

URL : http://europepmc.org/articles/pmc3951677?pdf=render

R. Koch, Die Aetiologie der Tuberkulose, Klinische Wochenschrift, vol.11, issue.12, pp.221-230, 1882.
DOI : 10.1007/BF01765224

M. B. Lurie, Resistance to tuberculosis: Experimental studies in native and acquired defensive mechanisms, 1964.
DOI : 10.4159/harvard.9780674420960

S. Mendez, Susceptibility to tuberculosis: Composition of tuberculous granulomas in Thorbecke and outbred New Zealand White rabbits, Veterinary Immunology and Immunopathology, vol.122, issue.1-2, pp.167-174, 2008.
DOI : 10.1016/j.vetimm.2007.11.006

URL : http://europepmc.org/articles/pmc2323443?pdf=render

G. Kaplan and L. Tsenova, Pulmonary tuberculosis in the rabbit A Colour Atlas of comparative pulmonary tuberculosis histopathology, pp.107-130, 2010.

J. L. Flynn, L. Tsenova, A. Izzo, and G. Kaplan, Experimental animal models of tuberculosis Handbook of tuberculosis, pp.389-426, 2008.

Y. C. Manabe, The aerosol rabbit model of TB latency, reactivation and immune reconstitution inflammatory syndrome, Tuberculosis, vol.88, issue.3, pp.187-196, 2008.
DOI : 10.1016/j.tube.2007.10.006

URL : http://europepmc.org/articles/pmc4477206?pdf=render

X. Liu, Retraction: Establishment of a Rabbit Model of Spinal Tuberculosis Using <i>Mycobacterium tuberculosis</i> Strain H37Rv, Japanese Journal of Infectious Diseases, vol.68, issue.2, pp.89-97, 2015.
DOI : 10.7883/yoken.JJID.2014.147

URL : https://www.jstage.jst.go.jp/article/yoken/68/2/68_JJID.2014.147/_pdf

S. Subbian, P. Karakousis, and G. Kaplan, Rabbit model of mycobacterial diseases.
DOI : 10.1079/9781780643960.0402

L. Tsenova, BCG vaccination confers poor protection against M. tuberculosis HN878-induced central nervous system disease, Vaccine, vol.25, issue.28, pp.5126-5132, 2007.
DOI : 10.1016/j.vaccine.2006.11.024

A. J. Dannenberg, Rabbit model of tuberculosis Tuberculosis: pathogenesis, protection and control, pp.149-156, 1994.

K. L. Helke, J. L. Mankowski, and Y. C. Manabe, Animal models of cavitation in pulmonary tuberculosis, Tuberculosis, vol.86, issue.5, pp.337-348, 2006.
DOI : 10.1016/j.tube.2005.09.001

L. E. Via, Tuberculous Granulomas Are Hypoxic in Guinea Pigs, Rabbits, and Nonhuman Primates, Infection and Immunity, vol.76, issue.6, pp.2333-2340, 2008.
DOI : 10.1128/IAI.01515-07

URL : http://iai.asm.org/content/76/6/2333.full.pdf

Y. C. Manabe, Different Strains of Mycobacterium tuberculosis Cause Various Spectrums of Disease in the Rabbit Model of Tuberculosis, Infection and Immunity, vol.71, issue.10, pp.6004-6011, 2003.
DOI : 10.1128/IAI.71.10.6004-6011.2003

L. E. Via, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.56, issue.8, pp.4391-4402, 2012.
DOI : 10.1128/AAC.00531-12

M. C. Kjellsson, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.56, issue.1, pp.446-457, 2012.
DOI : 10.1128/AAC.05208-11

P. Liu, H. Jiang, S. Li, Z. Lin, and J. Jiang, Determination of anti-tuberculosis drug concentration and distribution from sustained release microspheres in the vertebrae of a spinal tuberculosis rabbit model, Journal of Orthopaedic Research, vol.74, issue.1, pp.200-208, 2017.
DOI : 10.1016/0962-8479(93)90008-L

B. Prideaux, The association between sterilizing activity and drug distribution into tuberculosis lesions, Nature Medicine, vol.53, issue.10, pp.1223-1227, 2015.
DOI : 10.1002/jps.21317

URL : http://europepmc.org/articles/pmc4598290?pdf=render

A. Zumla, Host-directed therapies for infectious diseases: current status, recent progress, and future prospects, The Lancet Infectious Diseases, vol.16, issue.4, pp.47-63, 2016.
DOI : 10.1016/S1473-3099(16)00078-5

S. Subbian, Phosphodiesterase-4 Inhibition Combined with Isoniazid Treatment of Rabbits with Pulmonary Tuberculosis Reduces Macrophage Activation and Lung Pathology, The American Journal of Pathology, vol.179, issue.1, pp.289-301, 2011.
DOI : 10.1016/j.ajpath.2011.03.039

URL : http://europepmc.org/articles/pmc3123788?pdf=render

M. Datta, Anti-vascular endothelial growth factor treatment normalizes tuberculosis granuloma vasculature and improves small molecule delivery, Proc. Natl Acad. Sci. USA, pp.1827-1832, 2015.
DOI : 10.1128/AAC.00531-12

URL : http://www.pnas.org/content/112/6/1827.full.pdf

A. M. Dannenberg and . Jr, Perspectives on Clinical and Preclinical Testing of New Tuberculosis Vaccines, Clinical Microbiology Reviews, vol.23, issue.4, pp.781-794, 2010.
DOI : 10.1128/CMR.00005-10

URL : http://cmr.asm.org/content/23/4/781.full.pdf

P. J. Converse, Pulmonary bovine-type tuberculosis in rabbits: bacillary virulence, inhaled dose effects, tuberculin sensitivity, and Mycobacterium vaccae immunotherapy, Clin. Diagn. Lab. Immunol, vol.5, pp.871-881, 1998.

F. Breitburd, Immunization with virus like particles from cottontail rabbit papillomavirus (CRPV) can protect against experimental CRPV infection, J. Virol, vol.69, pp.3959-3963, 1995.

N. D. Christensen, Cottontail Rabbit Papillomavirus (CRPV) Model System to Test Antiviral and Immunotherapeutic Strategies, Antiviral Chemistry and Chemotherapy, vol.59, issue.6, pp.355-362, 2005.
DOI : 10.1038/nrc798

J. Hu, N. M. Cladel, K. Balogh, L. Budgeon, and N. D. Christensen, Impact of genetic changes to the CRPV genome and their application to the study of pathogenesis in vivo, Virology, vol.358, issue.2, pp.384-390, 2007.
DOI : 10.1016/j.virol.2006.08.045

G. A. Maglennon, P. Mcintosh, and J. Doorbar, Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression, Virology, vol.414, issue.2, pp.153-163, 2011.
DOI : 10.1016/j.virol.2011.03.019

J. Hu, An HLA-A2.1-Transgenic Rabbit Model to Study Immunity to Papillomavirus Infection, The Journal of Immunology, vol.177, issue.11, pp.8037-8045, 2006.
DOI : 10.4049/jimmunol.177.11.8037

P. D. Bieniasz and B. R. Cullen, Multiple Blocks to Human Immunodeficiency Virus Type 1 Replication in Rodent Cells, Journal of Virology, vol.74, issue.21, pp.9868-9877, 2000.
DOI : 10.1128/JVI.74.21.9868-9877.2000

URL : http://jvi.asm.org/content/74/21/9868.full.pdf

J. Cohen, Building a Small-Animal Model for AIDS, Block by Block, Science, vol.293, issue.5532, pp.1034-1036, 2001.
DOI : 10.1126/science.293.5532.1034

O. T. Keppler, Progress Toward a Human CD4/CCR5 Transgenic Rat Model for De Novo Infection by Human Immunodeficiency Virus Type 1, The Journal of Experimental Medicine, vol.202, issue.6, pp.719-736, 2002.
DOI : 10.1073/pnas.97.26.14566

URL : http://jem.rupress.org/content/jem/195/6/719.full.pdf

N. Michel, Human cyclin T1 expression ameliorates a T-cell-specific transcriptional limitation for HIV in transgenic rats, but is not sufficient for a spreading infection of prototypic R5 HIV-1 strains ex vivo, Retrovirology, vol.6, issue.1, 2009.
DOI : 10.1186/1742-4690-6-2

T. Cutino-moguel and A. Fassati, A Phenotypic Recessive, Post-Entry Block in Rabbit Cells that Results in Aberrant Trafficking of HIV-1, Traffic, vol.75, issue.8, pp.978-992, 2006.
DOI : 10.1128/JVI.75.14.6537-6546.2001

T. Schaller, S. Hue, and G. J. Towers, An Active TRIM5 Protein in Rabbits Indicates a Common Antiviral Ancestor for Mammalian TRIM5 Proteins, Journal of Virology, vol.81, issue.21, pp.11713-11721, 2007.
DOI : 10.1128/JVI.01468-07

URL : http://jvi.asm.org/content/81/21/11713.full.pdf

H. M. Tervo and O. Keppler, High Natural Permissivity of Primary Rabbit Cells for HIV-1, with a Virion Infectivity Defect in Macrophages as the Final Replication Barrier, Journal of Virology, vol.84, issue.23, pp.12300-12314, 2010.
DOI : 10.1128/JVI.01607-10

C. Goffinet, HIV-1 Antagonism of CD317 Is Species Specific and Involves Vpu-Mediated Proteasomal Degradation of the Restriction Factor, Cell Host & Microbe, vol.5, issue.3, pp.285-297, 2009.
DOI : 10.1016/j.chom.2009.01.009

T. Ikeda, The antiretroviral potency of APOBEC1 deaminase from small animal species, Nucleic Acids Research, vol.81, issue.21, pp.6859-6871, 2008.
DOI : 10.1128/JVI.01468-07

URL : https://academic.oup.com/nar/article-pdf/36/21/6859/16750035/gkn802.pdf

J. X. Zhang, G. E. Diehl, and D. R. Littman, Relief of Preintegration Inhibition and Characterization of Additional Blocks for HIV Replication in Primary Mouse T Cells, PLoS ONE, vol.75, issue.4, p.2035, 2008.
DOI : 10.1371/journal.pone.0002035.s003

R. F. Speck, Rabbit cells expressing human CD4 and human CCR5 are highly permissive for human immunodeficiency virus type 1 infection, J. Virol, vol.72, pp.5728-5734, 1998.

R. Guo, Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system, Scientific Reports, vol.31, issue.1, p.29855, 2016.
DOI : 10.1038/nbt.2478

URL : http://www.nature.com/articles/srep29855.pdf

D. Yang, Identification and characterization of rabbit ROSA26 for gene knock-in and stable reporter gene expression, Scientific Reports, vol.515, issue.1, p.25161, 2016.
DOI : 10.1016/j.gene.2012.11.016

URL : http://www.nature.com/articles/srep25161.pdf

A. Torrents-de-la-peña, ABSTRACT, Journal of Virology, vol.88, issue.8, pp.1957-1974, 2018.
DOI : 10.1128/JVI.02853-13

R. W. Sanders, HIV-1 neutralizing antibodies induced by native-like envelope trimers, Science, vol.477, issue.7365, p.4223, 2015.
DOI : 10.1038/nature10373

URL : http://europepmc.org/articles/pmc4498988?pdf=render

S. Beddows, A comparative immunogenicity study in rabbits of disulfide-stabilized, proteolytically cleaved, soluble trimeric human immunodeficiency virus type 1 gp140, trimeric cleavage-defective gp140 and monomeric gp120, Virology, vol.360, issue.2, pp.329-340, 2007.
DOI : 10.1016/j.virol.2006.10.032

URL : https://doi.org/10.1016/j.virol.2006.10.032

P. F. Zhang, Extensively cross-reactive anti-HIV-1 neutralizing antibodies induced by gp140 immunization, Proc. Natl Acad. Sci. Usa, pp.10193-10198, 2007.
DOI : 10.1089/088922299311088

URL : http://europepmc.org/articles/pmc1885220?pdf=render

M. Dong, Induction of Primary Virus-Cross-Reactive Human Immunodeficiency Virus Type 1-Neutralizing Antibodies in Small Animals by Using an Alphavirus-Derived In Vivo Expression System, Journal of Virology, vol.77, issue.5, pp.3119-3130, 2003.
DOI : 10.1128/JVI.77.5.3119-3130.2003

D. W. Kulp, Structure-based design of native-like HIV-1 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding, Nature Communications, vol.70, issue.1, p.1655, 2017.
DOI : 10.1016/j.jsb.2012.09.006

URL : https://www.nature.com/articles/s41467-017-01549-6.pdf

M. Law, R. M. Cardoso, I. A. Wilson, and D. R. Burton, Antigenic and Immunogenic Study of Membrane-Proximal External Region-Grafted gp120 Antigens by a DNA Prime-Protein Boost Immunization Strategy, Journal of Virology, vol.81, issue.8, pp.4272-4285, 2007.
DOI : 10.1128/JVI.02536-06

URL : http://jvi.asm.org/content/81/8/4272.full.pdf

J. F. Richmond, Screening of HIV-1 Env Glycoproteins for the Ability to Raise Neutralizing Antibody Using DNA Immunization and Recombinant Vaccinia Virus Boosting, Virology, vol.230, issue.2, pp.265-274, 1997.
DOI : 10.1006/viro.1997.8478

URL : https://doi.org/10.1006/viro.1997.8478

S. Lu, : Immunogenicity of DNA Vaccines Expressing Human Immunodeficiency Virus Type 1 Envelope Glycoprotein with and without Deletions in the V1/2 and V3 Regions, AIDS Research and Human Retroviruses, vol.14, issue.2, pp.151-155, 1998.
DOI : 10.1089/aid.1998.14.151

S. Wang, Enhanced Immunogenicity of gp120 Protein When Combined with Recombinant DNA Priming To Generate Antibodies That Neutralize the JR-FL Primary Isolate of Human Immunodeficiency Virus Type 1, Journal of Virology, vol.79, issue.12, pp.7933-7937, 2005.
DOI : 10.1128/JVI.79.12.7933-7937.2005

M. Vaine, Improved Induction of Antibodies against Key Neutralizing Epitopes by Human Immunodeficiency Virus Type 1 gp120 DNA Prime-Protein Boost Vaccination Compared to gp120 Protein-Only Vaccination, Journal of Virology, vol.82, issue.15, pp.7369-7378, 2008.
DOI : 10.1128/JVI.00562-08

URL : http://jvi.asm.org/content/82/15/7369.full.pdf

M. Vaine, S. Wang, A. Hackett, J. Arthos, and S. Lu, Antibody responses elicited through homologous or heterologous prime-boost DNA and protein vaccinations differ in functional activity and avidity, Vaccine, vol.28, issue.17, pp.2999-3007, 2010.
DOI : 10.1016/j.vaccine.2010.02.006

URL : http://europepmc.org/articles/pmc2847033?pdf=render

M. Vaine, Two Closely Related Env Antigens from the Same Patient Elicited Different Spectra of Neutralizing Antibodies against Heterologous HIV-1 Isolates, Journal of Virology, vol.85, issue.10, pp.4927-4936, 2011.
DOI : 10.1128/JVI.00081-11

URL : http://jvi.asm.org/content/85/10/4927.full.pdf

Y. Chen, A Novel Rabbit Monoclonal Antibody Platform To Dissect the Diverse Repertoire of Antibody Epitopes for HIV-1 Env Immunogen Design, Journal of Virology, vol.87, issue.18, pp.10232-10243, 2013.
DOI : 10.1128/JVI.00837-13

R. Pan, Rabbit Anti-HIV-1 Monoclonal Antibodies Raised by Immunization Can Mimic the Antigen-Binding Modes of Antibodies Derived from HIV-1-Infected Humans, Journal of Virology, vol.87, issue.18, pp.10221-10231, 2013.
DOI : 10.1128/JVI.00843-13

R. Pan, Structural analysis of a novel rabbit monoclonal antibody R53 targeting an epitope in HIV-1 gp120 C4 region critical for receptor and co-receptor binding, Emerging Microbes & Infections, vol.5, issue.7, p.44, 2015.
DOI : 10.1371/journal.pone.0008555

S. Liu, S. Wang, and S. Lu, DNA immunization as a technology platform for monoclonal antibody induction, Emerging Microbes & Infections, vol.4, issue.4, p.33, 2016.
DOI : 10.1038/emi.2015.44

URL : http://www.nature.com/emi/journal/v5/n4/pdf/emi201627a.pdf

R. Srivastava, Human asymptomatic epitopes identified from the herpes simplex virus tegument protein vp13/14 (ul47) preferentially recall polyfunctional effector memory cd44high cd62llow cd8+ tem cells and protect humanized hla-a*02:01 transgenic mice against ocular herpesvirus infection, J. Virol, vol.91, pp.1793-1809, 2017.
DOI : 10.1128/jvi.01793-16

URL : http://jvi.asm.org/content/91/2/e01793-16.full.pdf

R. Srivastava, CXCR3-dependent mobilization of hsv-specific cd8+ tem and cd8+ trm cells within infected tissues allows efficient protection against recurrent herpes infection and disease, J. Virol, vol.91, pp.278-295, 2017.
DOI : 10.1128/jvi.00278-17

URL : http://jvi.asm.org/content/91/14/e00278-17.full.pdf

A. B. Nesburn, L. Benmohamed, L. Tribute-to-professor-steven, and . Wechsler, A Tribute to Professor Steven L. Wechsler (1948???2016): The Man and the Scientist, Current Eye Research, vol.41, issue.6, pp.161-162, 1948.
DOI : 10.1007/s13365-015-0348-9

A. Nalbandian, Activation of the NLRP3 Inflammasome Is Associated with Valosin-Containing Protein Myopathy, Inflammation, vol.125, issue.Suppl 1, pp.21-41, 2017.
DOI : 10.1016/S0165-5728(02)00018-8

URL : http://europepmc.org/articles/pmc5800525?pdf=render

A. A. Khan, Effector Memory T Cells and Tissue-Resident Memory T Cells in Latently Infected Trigeminal Ganglia Reduces Recurrent Ocular Herpes Infection and Disease, The Journal of Immunology, vol.39, issue.Suppl. 3, pp.186-203, 2017.
DOI : 10.1089/hum.2007.093

G. Dasgupta and L. Benmohamed, Of mice and not humans: How reliable are animal models for evaluation of herpes CD8+-T cell-epitopes-based immunotherapeutic vaccine candidates?, Vaccine, vol.29, issue.35, pp.5824-5836, 2011.
DOI : 10.1016/j.vaccine.2011.06.083

A. A. Chentoufi, T Cell Epitope-Based Vaccines against Ocular Herpes, The Journal of Immunology, vol.184, issue.5, pp.2561-2571, 2010.
DOI : 10.4049/jimmunol.0902322

R. Srivastava, ABSTRACT, Journal of Virology, vol.90, issue.8, pp.3913-3928, 2016.
DOI : 10.1128/JVI.02450-15

G. C. Perng, Large Amounts of Reactivated Virus in Tears Precedes Recurrent Herpes Stromal Keratitis in Stressed Rabbits Latently Infected with Herpes Simplex Virus, Current Eye Research, vol.66, pp.284-291, 2016.
DOI : 10.1080/13550280802216510

J. V. Jester, Confocal Microscopic Analysis of a Rabbit Eye Model of High-Incidence Recurrent Herpes Stromal Keratitis, Cornea, vol.35, issue.1, pp.81-88, 2016.
DOI : 10.1097/ICO.0000000000000666

R. Srivastava, T-Cell Epitopes-Based Vaccine Protects Against Ocular Herpes in a ???Humanized??? HLA Transgenic Rabbit Model, Investigative Opthalmology & Visual Science, vol.56, issue.6, pp.2232-2248, 2015.
DOI : 10.1167/iovs.15-17074

URL : http://iovs.arvojournals.org/data/journals/iovs/934118/i1552-5783-56-6-4013.pdf

R. Srivastava, T-Cell Epitopes-Based Vaccine Protects Against Ocular Herpes in a ???Humanized??? HLA Transgenic Rabbit Model, Investigative Opthalmology & Visual Science, vol.56, issue.6, pp.4013-4028, 2015.
DOI : 10.1167/iovs.15-17074

URL : http://iovs.arvojournals.org/data/journals/iovs/934118/i1552-5783-56-6-4013.pdf

A. A. Khan, ABSTRACT, Journal of Virology, vol.89, issue.13, pp.6619-6632, 2015.
DOI : 10.1128/JVI.00788-15