?. Priya, R. Paredes, M. Karayannis, T. Yusuf, N. Liu et al., Activity Regulates Cell Death within Cortical Interneurons through a Calcineurin-Dependent Mechanism, Cell Reports, vol.22, issue.7, pp.1695-1709, 2018.
DOI : 10.1016/j.celrep.2018.01.007

URL : https://doi.org/10.1016/j.celrep.2018.01.007

M. Denaxa, G. Neves, A. Rabinowitz, S. Kemlo, P. Liodis et al., Modulation of Apoptosis Controls Inhibitory Interneuron Number in the Cortex, Cell Reports, vol.22, issue.7, pp.1710-1721, 2018.
DOI : 10.1016/j.celrep.2018.01.064

URL : https://www.biorxiv.org/content/early/2017/09/12/134916.full.pdf

D. Price, S. Aslam, L. Tasker, and K. Gillies, Fates of the earliest generated cells in the developing murine neocortex, The Journal of Comparative Neurology, vol.66, issue.3, pp.414-422, 1997.
DOI : 10.1002/(SICI)1096-9861(19970120)377:3<414::AID-CNE8>3.0.CO;2-5

M. Marx, G. Qi, I. Hanganu-opatz, W. Kilb, H. Luhmann et al., Neocortical Layer 6B as a Remnant of the Subplate - A Morphological Comparison, Cerebral Cortex, vol.17, pp.1011-1026, 2017.
DOI : 10.1523/JNEUROSCI.5646-08.2009

URL : https://academic.oup.com/cercor/article-pdf/27/2/1011/10907393/bhv279.pdf

S. Viswanathan, A. Sheikh, L. Looger, and P. Kanold, Molecularly Defined Subplate Neurons Project Both to Thalamocortical Recipient Layers and Thalamus, Cerebral Cortex, vol.10, pp.4759-4768, 2017.
DOI : 10.1523/JNEUROSCI.4471-09.2009

A. Hoerder-suabedissen and Z. Molnar, Molecular Diversity of Early-Born Subplate Neurons, Cerebral Cortex, vol.29, issue.28, pp.1473-1483, 2013.
DOI : 10.1523/JNEUROSCI.5646-08.2009

URL : https://academic.oup.com/cercor/article-pdf/23/6/1473/17308001/bhs137.pdf

A. Duque, Z. Krsnik, I. Kostovic, and P. Rakic, Secondary expansion of the transient subplate zone in the developing cerebrum of human and nonhuman primates, Proceedings of the National Academy of Sciences, vol.26, issue.5560, pp.9892-9897
DOI : 10.1093/cercor/12.5.536

A. Teissier, R. Waclaw, A. Griveau, K. Campbell, and A. Pierani, Tangentially Migrating Transient Glutamatergic Neurons Control Neurogenesis and Maintenance of Cerebral Cortical Progenitor Pools, Cerebral Cortex, vol.451, issue.2, pp.403-416, 2012.
DOI : 10.1038/nature06562

URL : https://hal.archives-ouvertes.fr/hal-00639970

S. Minocha, D. Valloton, I. Brunet, A. Eichmann, J. Hornung et al., Author response, eLife, vol.4, p.9102, 2015.
DOI : 10.7554/eLife.09102.021

M. Barber and A. Pierani, Tangential migration of glutamatergic neurons and cortical patterning during development: Lessons from Cajal-Retzius cells, Developmental Neurobiology, vol.196, issue.1, pp.847-881, 2016.
DOI : 10.1083/jcb.201106113

URL : https://hal.archives-ouvertes.fr/hal-01318440

S. Kirischuk, H. Luhmann, and W. Kilb, Cajal???Retzius cells: Update on structural and functional properties of these mystic neurons that bridged the 20th century, Neuroscience, vol.275, pp.33-46, 2014.
DOI : 10.1016/j.neuroscience.2014.06.009

M. Anstotz, K. Cosgrove, I. Hack, E. Mugnaini, G. Maccaferri et al., Morphology, input???output relations and synaptic connectivity of Cajal???Retzius cells in layer 1 of the developing neocortex of CXCR4-EGFP mice, Brain Structure and Function, vol.376, issue.6, pp.2119-2139, 2014.
DOI : 10.1002/(SICI)1096-9861(19961209)376:2<198::AID-CNE3>3.0.CO;2-Z

T. Chowdhury, J. Jimenez, J. Bomar, A. Cruz-martin, and J. Cantle, Portera-Cailliau C: Fate of cajal-retzius neurons in the postnatal mouse neocortex, Front Neuroanat, vol.4, p.10, 2010.
DOI : 10.3389/neuro.05.010.2010

URL : https://www.frontiersin.org/articles/10.3389/neuro.05.010.2010/pdf

J. Parnavelas and S. Edmunds, Further evidence that Retzius-Cajal cells transform to nonpyramidal neurons in the developing rat visual cortex, Journal of Neurocytology, vol.179, issue.5, pp.863-871, 1983.
DOI : 10.1007/BF01258156

M. Anstotz, S. Lee, T. Neblett, G. Rune, and G. Maccaferri, Experience-Dependent Regulation of Cajal???Retzius Cell Networks in the Developing and Adult Mouse Hippocampus, Cerebral Cortex, vol.29, issue.2, pp.672-687, 2018.
DOI : 10.1159/000096213

J. Ma, X. Yao, Y. Fu, and Y. Yu, Development of Layer 1 Neurons in the Mouse Neocortex, Cerebral Cortex, vol.24, issue.10, pp.2604-2618, 2014.
DOI : 10.1523/JNEUROSCI.4805-03.2004

D. Rio, J. Heimrich, B. Super, H. Borrell, V. Frotscher et al., Differential survival of Cajal-Retzius cells in organotypic cultures of hippocampus and neocortex, J Neurosci, vol.16, pp.6896-6907, 1996.

O. Blanquie, L. Liebmann, C. Hubner, and H. Luhmann, Sinning A: NKCC1-Mediated GABAergic Signaling Promotes Postnatal Cell Death in Neocortical Cajal-Retzius Cells, Cereb Cortex, vol.27, pp.1644-1659, 2017.
DOI : 10.1093/cercor/bhw004

URL : https://academic.oup.com/cercor/article-pdf/27/2/1644/17760591/bhw004.pdf

A. Louvi, M. Yoshida, and E. Grove, The derivatives of theWnt3a lineage in the central nervous system, The Journal of Comparative Neurology, vol.16, issue.5, pp.550-569, 2007.
DOI : 10.1016/0165-3806(83)90119-0

M. Anstotz, H. Huang, I. Marchionni, I. Haumann, G. Maccaferri et al., Developmental Profile, Morphology, and Synaptic Connectivity of Cajal???Retzius Cells in the Postnatal Mouse Hippocampus, Cerebral Cortex, vol.18, pp.855-872, 2016.
DOI : 10.4103/1673-5374.128243

K. Kuida, T. Haydar, C. Kuan, Y. Gu, C. Taya et al., Reduced Apoptosis and Cytochrome c???Mediated Caspase Activation in Mice Lacking Caspase 9, Cell, vol.94, issue.3, pp.325-337, 1998.
DOI : 10.1016/S0092-8674(00)81476-2

URL : https://doi.org/10.1016/s0092-8674(00)81476-2

K. Kuida, T. Zheng, S. Na, C. Kuan, D. Yang et al., Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice, Nature, vol.384, issue.6607, pp.368-372, 1996.
DOI : 10.1038/384368a0

J. Leonard, B. Klocke, D. Sa, C. Flavell, R. Roth et al., Strain-Dependent Neurodevelopmental Abnormalities in Caspase-3-Deficient Mice, Journal of Neuropathology & Experimental Neurology, vol.181, issue.8, pp.673-677, 2002.
DOI : 10.1093/jnen/60.10.937

URL : https://academic.oup.com/jnen/article-pdf/61/8/673/9553258/61-8-673.pdf

S. Rehen, M. Mcconnell, D. Kaushal, M. Kingsbury, A. Yang et al., Chromosomal variation in neurons of the developing and adult mammalian nervous system, Proceedings of the National Academy of Sciences, vol.285, issue.5425, pp.13361-13366, 2001.
DOI : 10.1126/science.285.5425.251

URL : http://europepmc.org/articles/pmc60876?pdf=render

K. Nonomura, Y. Yamaguchi, M. Hamachi, M. Koike, Y. Uchiyama et al., Local Apoptosis Modulates Early Mammalian Brain Development through the Elimination of Morphogen-Producing Cells, Developmental Cell, vol.27, issue.6, pp.621-634, 2013.
DOI : 10.1016/j.devcel.2013.11.015

URL : https://doi.org/10.1016/j.devcel.2013.11.015

K. Sekine, K. Kubo, and K. Nakajima, How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex?, Neuroscience Research, vol.86, pp.50-58, 2014.
DOI : 10.1016/j.neures.2014.06.004

U. Borello and A. Pierani, Patterning the cerebral cortex: traveling with morphogens, Current Opinion in Genetics & Development, vol.20, issue.4, pp.408-415, 2010.
DOI : 10.1016/j.gde.2010.05.003

URL : https://hal.archives-ouvertes.fr/hal-00505259

M. Barber, Y. Arai, Y. Morishita, L. Vigier, F. Causeret et al., Migration Speed of Cajal-Retzius Cells Modulated by Vesicular Trafficking Controls the Size of Higher-Order Cortical Areas, Current Biology, vol.25, issue.19, pp.2466-2478, 2015.
DOI : 10.1016/j.cub.2015.08.028

URL : https://hal.archives-ouvertes.fr/hal-01266802

A. Griveau, U. Borello, F. Causeret, F. Tissir, N. Boggetto et al., A Novel Role for Dbx1-Derived Cajal-Retzius Cells in Early Regionalization of the Cerebral Cortical Neuroepithelium, PLoS Biology, vol.25, issue.7, p.1000440, 2010.
DOI : 10.1371/journal.pbio.1000440.s008

URL : https://hal.archives-ouvertes.fr/hal-00509911

M. Niquille, S. Garel, F. Mann, J. Hornung, B. Otsmane et al., Transient Neuronal Populations Are Required to Guide Callosal Axons: A Role for Semaphorin 3C, PLoS Biology, vol.32, issue.10, p.1000230, 2009.
DOI : 10.1371/journal.pbio.1000230.s009

URL : https://hal.archives-ouvertes.fr/inserm-00707639

G. Caronia-brown and E. Grove, Timing of Cortical Interneuron Migration Is Influenced by the Cortical Hem, Cerebral Cortex, vol.28, issue.4, pp.748-755, 2011.
DOI : 10.1111/j.1460-9568.2008.06320.x

URL : https://academic.oup.com/cercor/article-pdf/21/4/748/17304159/bhq142.pdf

C. Fogarty and A. Bergmann, The Sound of Silence, Curr Top Dev Biol, vol.114, pp.241-265, 2015.
DOI : 10.1016/bs.ctdb.2015.07.013

Y. Fuchs and H. Steller, Live to die another way: modes of programmed cell death and the signals emanating from dying cells, Nature Reviews Molecular Cell Biology, vol.25, issue.6, pp.329-344, 2015.
DOI : 10.1016/j.devcel.2013.02.002

URL : http://europepmc.org/articles/pmc4511109?pdf=render

B. Freret-hodara, Y. Cui, A. Griveau, L. Vigier, Y. Arai et al., Enhanced Abventricular Proliferation Compensates Cell Death in the Embryonic Cerebral Cortex, Cerebral Cortex, vol.15, pp.4701-4718, 2017.
DOI : 10.1016/j.ydbio.2004.01.014

URL : https://hal.archives-ouvertes.fr/hal-01412093

H. Luhmann, Cajal???Retzius and Subplate Cells, pp.843-856
DOI : 10.1016/B978-0-12-397266-8.00009-0

S. Akbarian, J. Kim, S. Potkin, W. Hetrick, W. Bunney et al., Maldistribution of Interstitial Neurons in Prefrontal White Matter of the Brains of Schizophrenic Patients, Archives of General Psychiatry, vol.53, issue.5, pp.425-436, 1996.
DOI : 10.1001/archpsyc.1996.01830050061010

A. Crawford, R. Tripathi, W. Richardson, and R. Franklin, Developmental Origin of Oligodendrocyte Lineage Cells Determines Response to Demyelination and Susceptibility to Age-Associated Functional Decline, Cell Reports, vol.15, issue.4, pp.761-773, 2016.
DOI : 10.1016/j.celrep.2016.03.069

URL : https://doi.org/10.1016/j.celrep.2016.03.069

G. Meyer and M. Gonzalez-gomez, The heterogeneity of human Cajal-Retzius neurons, Seminars in Cell & Developmental Biology, vol.76, pp.101-111, 2018.
DOI : 10.1016/j.semcdb.2017.08.059