L. Guéhennec, L. Soueidan, A. Layrolle, P. Amouriq, and Y. , Surface treatments of titanium dental implants for rapid osseointegration, Dental Materials, vol.23, issue.7, pp.844-854, 2007.
DOI : 10.1016/j.dental.2006.06.025

D. Buser, N. Broggini, and M. Wieland, Enhanced Bone Apposition to a Chemically Modified SLA Titanium Surface, Journal of Dental Research, vol.83, issue.7
DOI : 10.1034/j.1600-0501.1995.060103.x

F. Schwarz, M. Herten, M. Sager, M. Wieland, M. Dard et al., ) and conventional SLA titanium implants: a pilot study in dogs, Journal of Clinical Periodontology, vol.6, issue.1, pp.78-86, 2007.
DOI : 10.1002/jbm.a.30320

S. Lavenus, J. Ricquier, G. Louarn, and P. Layrolle, Cell interaction with nanopatterned surface of implants, Nanomedicine, vol.49, issue.6, pp.937-947, 2010.
DOI : 10.1007/BF02556260

URL : https://hal.archives-ouvertes.fr/hal-00726155

K. Suzuki, K. Aoki, and K. Ohya, Effects of surface roughness of titanium implants on bone remodeling activity of femur in rabbits, Bone, vol.21, issue.6, pp.507-514, 1997.
DOI : 10.1016/S8756-3282(97)00204-4

S. Renvert, I. Polyzois, and N. Claffey, How do implant surface characteristics influence peri-implant disease?, Journal of Clinical Periodontology, vol.35, issue.(S, pp.214-222, 2011.
DOI : 10.1111/j.1600-051X.2008.01274.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-051X.2010.01661.x/pdf

K. Subramani and D. Wismeijer, Decontamination of titanium implant surface and re-osseointegration to treat periimplantitis: a literature review, Int. J. Oral Maxillofac. Implants, vol.27, issue.5, pp.1043-1054, 2012.

K. Cai, J. Bossert, and K. Jandt, Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?, Colloids and Surfaces B: Biointerfaces, vol.49, issue.2, pp.136-144, 2006.
DOI : 10.1016/j.colsurfb.2006.02.016

L. Bacakova, E. Filova, M. Parizek, T. Ruml, and V. Svorcik, Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants, Biotechnology Advances, vol.29, issue.6, pp.739-767, 2011.
DOI : 10.1016/j.biotechadv.2011.06.004

R. Mcbeath, D. Pirone, C. Nelson, K. Bhadriraju, and C. Chen, Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment, Developmental Cell, vol.6, issue.4, pp.483-495, 2004.
DOI : 10.1016/S1534-5807(04)00075-9

M. Dalby, N. Gadegaard, and R. Tare, The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder, Nature Materials, vol.6, issue.12, pp.997-1003, 2007.
DOI : 10.1016/j.febslet.2004.07.055

J. Park, S. Bauer, V. Der-mark, K. Schmuki, and P. , Nanotube Diameter Directs Cell Fate, Nano Letters, vol.7, issue.6, pp.1686-1691, 2007.
DOI : 10.1021/nl070678d

S. Oh, K. Brammer, and Y. Li, Stem cell fate dictated solely by altered nanotube dimension, Proc. Natl Acad. Sci. USA Bone tissue integration of nanostructured dental implants Research Article ? Complete study on mechanotransduction, pp.2130-2135, 2009.
DOI : 10.1634/stemcells.2005-0368

URL : http://www.pnas.org/content/106/7/2130.full.pdf

A. Apolinário, C. Sousa, and J. Ventura, nanotubes: a detailed study of the growth mechanism, J. Mater. Chem. A, vol.51, issue.24, pp.9067-9078, 2014.
DOI : 10.1016/j.electacta.2005.04.011

S. Sreekantan, K. Saharudin, Z. Lockman, and T. Tzu, nanotube arrays in an organic bath and their applications in photocatalysis, Nanotechnology, vol.21, issue.36, p.365603, 2010.
DOI : 10.1088/0957-4484/21/36/365603

G. Mor, O. Varghese, M. Paulose, N. Mukherjee, and C. Grimes, Fabrication of tapered, conical-shaped titania nanotubes, Journal of Materials Research, vol.124, issue.11, pp.2588-2593, 2003.
DOI : 10.1557/JMR.2002.0172

S. Lavenus, M. Berreur, V. Trichet, P. Pilet, G. Louarn et al., Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores, European Cells and Materials, vol.22, pp.84-96, 2011.
DOI : 10.22203/eCM.v022a07

URL : https://hal.archives-ouvertes.fr/hal-00849362

V. Wilmowsky, C. Bauer, S. Roedl, S. Neukam, F. Schmuki et al., The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo, Clinical Oral Implants Research, vol.86, issue.3, pp.359-366, 2012.
DOI : 10.1016/S0092-8674(00)80133-6

N. Wang, H. Li, and W. Lü, Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs, Biomaterials, vol.32, issue.29, pp.6900-6911, 2011.
DOI : 10.1016/j.biomaterials.2011.06.023

B. Ercan, E. Taylor, E. Alpaslan, and T. Webster, Diameter of titanium nanotubes influences anti-bacterial efficacy, Nanotechnology, vol.22, issue.29, p.295102, 2011.
DOI : 10.1088/0957-4484/22/29/295102