P. Papaspyridakos, M. Mokti, C. Chen, G. Benic, G. Gallucci et al., Implant and Prosthodontic Survival Rates with Implant Fixed Complete Dental Prostheses in the Edentulous Mandible after at Least 5 Years: A Systematic Review, Clinical Implant Dentistry and Related Research, vol.20, issue.Suppl, 2013.
DOI : 10.1111/j.1600-0501.2009.01741.x

B. Gokcen-rohlig, M. Yaltirik, S. Ozer, E. Tuncer, and G. Evlioglu, Survival and success of ITI implants and prostheses: retrospective study of cases with 5-year followup, Eur J Dent, vol.3, pp.42-51, 2009.

L. Guéhennec, L. Soueidan, A. Layrolle, P. Amouriq, and Y. , Surface treatments of titanium dental implants for rapid osseointegration, Dent Mater Off Publ Acad Dent Mater, vol.23, pp.844-54, 2007.

C. Stanford, Surface modifications of dental implants, Australian Dental Journal, vol.84, issue.s1, pp.26-33, 2008.
DOI : 10.1002/mabi.200600270

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1834-7819.2008.00038.x/pdf

R. Junker, A. Dimakis, M. Thoneick, and J. Jansen, Effects of implant surface coatings and composition on bone integration: a systematic review, Clinical Oral Implants Research, vol.74, pp.185-206, 2009.
DOI : 10.1002/jbm.a.10363

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0501.2009.01777.x/pdf

D. Buser, N. Broggini, M. Wieland, R. Schenk, A. Denzer et al., Enhanced Bone Apposition to a Chemically Modified SLA Titanium Surface, Journal of Dental Research, vol.83, issue.7, pp.529-562, 2004.
DOI : 10.1034/j.1600-0501.1995.060103.x

F. Schwarz, M. Herten, M. Sager, M. Wieland, M. Dard et al., ) and conventional SLA titanium implants: a pilot study in dogs, Journal of Clinical Periodontology, vol.6, issue.1, pp.78-86, 2007.
DOI : 10.1002/jbm.a.30320

H. Rønold and J. Ellingsen, Effect of micro-roughness produced by TiO2 blasting???tensile testing of bone attachment by using coin-shaped implants, Biomaterials, vol.23, issue.21, pp.4211-4220, 2002.
DOI : 10.1016/S0142-9612(02)00167-9

H. Rønold, S. Lyngstadaas, and J. Ellingsen, A study on the effect of dual blasting with TiO2 on titanium implant surfaces on functional attachment in bone, J Biomed Mater Res A, vol.67, pp.524-554, 2003.

H. Schliephake, A. Aref, D. Scharnweber, S. Bierbaum, and A. Sewing, Effect of modifications of dual acid-etched implant surfaces on peri-implant bone formation. Part I: organic coatings, Clinical Oral Implants Research, vol.69, issue.1, pp.31-38, 2009.
DOI : 10.1002/jbm.a.30778

N. Jr, A. De-souza, S. De-barros, R. Pereira, K. Iezzi et al., Influence of implant surfaces on osseointegration, Braz Dent J, vol.21, pp.471-81, 2010.

A. Ross and T. Webster, Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions, Int J Nanomed, vol.8, pp.109-126, 2013.

Z. Schwartz, E. Nasazky, and B. Boyan, Surface microtopography regulates osteointegration: the role of implant surface microtopography in osteointegration, Alpha Omegan, vol.98, pp.9-19, 2005.

A. Wennerberg and T. Albrektsson, Effects of titanium surface topography on bone integration: a systematic review, Clinical Oral Implants Research, vol.16, pp.172-84, 2009.
DOI : 10.1007/978-94-011-7772-6

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1600-0501.2009.01775.x/pdf

S. Lavenus, M. Berreur, V. Trichet, P. Pilet, G. Louarn et al., Adhesion and osteogenic differentiation of human mesenchymal stem cells on titanium nanopores, European Cells and Materials, vol.22, pp.84-96, 2011.
DOI : 10.22203/eCM.v022a07

URL : https://hal.archives-ouvertes.fr/hal-00849362

S. Oh, K. Brammer, Y. Li, D. Teng, A. Engler et al., Stem cell fate dictated solely by altered nanotube dimension, Proceedings of the National Academy of Sciences, vol.24, issue.4, pp.2130-2135, 2009.
DOI : 10.1634/stemcells.2005-0368

URL : http://www.pnas.org/content/106/7/2130.full.pdf

S. Oh, C. Daraio, L. Chen, T. Pisanic, R. Fiñones et al., Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes, Journal of Biomedical Materials Research Part A, vol.13, issue.1, pp.97-103, 2006.
DOI : 10.1002/jbm.a.30722

S. Sirivisoot, C. Yao, X. Xiao, B. Sheldon, and T. Webster, Greater osteoblast functions on multiwalled carbon nanotubes grown from anodized nanotubular titanium for orthopedic applications, Nanotechnology, vol.18, issue.36, p.365102, 2007.
DOI : 10.1088/0957-4484/18/36/365102

C. Yao, E. Slamovich, and T. Webster, Enhanced osteoblast functions on anodized titanium with nanotube-like structures, Journal of Biomedical Materials Research Part A, vol.26, issue.1, pp.157-66, 2008.
DOI : 10.1007/b112196

K. Popat, L. Leoni, C. Grimes, and T. Desai, Influence of engineered titania nanotubular surfaces on bone cells, Biomaterials, vol.28, issue.21, pp.3188-97, 2007.
DOI : 10.1016/j.biomaterials.2007.03.020

M. Dalby, Topographically induced direct cell mechanotransduction, Medical Engineering & Physics, vol.27, issue.9, pp.730-772, 2005.
DOI : 10.1016/j.medengphy.2005.04.005

J. Park, S. Bauer, V. Der-mark, K. Schmuki, and P. , Nanotube Diameter Directs Cell Fate, Nano Letters, vol.7, issue.6, pp.1686-91, 2007.
DOI : 10.1021/nl070678d

L. Bacakova, E. Filova, M. Parizek, T. Ruml, and V. Svorcik, Modulation of cell adhesion, proliferation and differentiation on materials designed for body implants, Biotechnology Advances, vol.29, issue.6, pp.739-67, 2011.
DOI : 10.1016/j.biotechadv.2011.06.004

S. Lavenus, V. Trichet, L. Chevalier, S. Hoornaert, A. Louarn et al., Cell differentiation and osseointegration influenced by nanoscale anodized titanium surfaces, Nanomedicine, vol.268, issue.7, pp.967-80, 2012.
DOI : 10.1002/(SICI)1097-4636(199905)45:2<75::AID-JBM1>3.0.CO;2-P

B. Ercan, E. Taylor, E. Alpaslan, and T. Webster, Diameter of titanium nanotubes influences anti-bacterial efficacy, Nanotechnology, vol.22, issue.29, p.295102, 2011.
DOI : 10.1088/0957-4484/22/29/295102

B. Ercan, K. Kummer, K. Tarquinio, and T. Webster, Decreased Staphylococcus aureus biofilm growth on anodized nanotubular titanium and the effect of electrical stimulation, Acta Biomaterialia, vol.7, issue.7, pp.3003-3015, 2011.
DOI : 10.1016/j.actbio.2011.04.002

K. Kummer, E. Taylor, N. Durmas, K. Tarquinio, B. Ercan et al., Effects of different sterilization techniques and varying anodized TiO 2 nanotube dimensions on bacteria growth, J Biomed Mater Res B Appl Biomater, vol.101, pp.677-88, 2013.
DOI : 10.1002/jbm.b.32870

S. Puckett, E. Taylor, T. Raimondo, and T. Webster, The relationship between the nanostructure of titanium surfaces and bacterial attachment, Biomaterials, vol.31, issue.4, pp.706-719, 2010.
DOI : 10.1016/j.biomaterials.2009.09.081

K. Subramani and D. Wismeijer, Decontamination of titanium implant surface and re-osseointegration to treat peri-implantitis: a literature review, Int J Oral Maxillofac Implants, vol.27, pp.1043-54, 2012.

Y. Wu, J. Zitelli, K. Tenhuisen, X. Yu, and M. Libera, Differential response of Staphylococci and osteoblasts to varying titanium surface roughness, Biomaterials, vol.32, issue.4, pp.951-60, 2011.
DOI : 10.1016/j.biomaterials.2010.10.001

P. Coelho, J. Granjeiro, G. Romanos, M. Suzuki, N. Silva et al., Basic research methods and current trends of dental implant surfaces, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.19, issue.17, pp.579-96, 2009.
DOI : 10.1590/S1678-77572005000100018

S. Minagar, C. Berndt, J. Wang, E. Ivanova, and C. Wen, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta Biomaterialia, vol.8, issue.8, pp.2875-88, 2012.
DOI : 10.1016/j.actbio.2012.04.005

C. Pérez-jorge, A. Conde, M. Arenas, R. Pérez-tanoira, E. Matykina et al., In vitro assessment of Staphylococcus epidermidis and Staphylococcus aureus adhesion on TiO2 nanotubes on Ti-6Al-4V alloy, Journal of Biomedical Materials Research Part A, vol.88, issue.7, pp.1696-705, 2012.
DOI : 10.1002/jbm.a.31898

E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme, Biocompatibility of ??-stabilizing elements of titanium alloys, Biomaterials, vol.25, issue.26, pp.5705-5718, 2004.
DOI : 10.1016/j.biomaterials.2004.01.021

J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, . I. Phase Transformation at the Surface and in the Bulk, The Journal of Physical Chemistry B, vol.110, issue.2, pp.927-962, 2006.
DOI : 10.1021/jp0552473

URL : https://hal.archives-ouvertes.fr/hal-01204363

J. Koh, J. Yang, J. Han, J. Lee, and S. Kim, Biomechanical evaluation of dental implants with different surfaces: Removal torque and resonance frequency analysis in rabbits, The Journal of Advanced Prosthodontics, vol.1, issue.2, pp.107-119, 2009.
DOI : 10.4047/jap.2009.1.2.107

URL : http://europepmc.org/articles/pmc2994679?pdf=render

H. Tsuchiya, J. Macak, A. Ghicov, and P. Schmuki, Self-Organization of Anodic Nanotubes on Two Size Scales, Small, vol.28, issue.7, pp.888-91, 2006.
DOI : 10.1016/S0921-5093(97)00808-3

G. Liu, K. Wang, N. Hoivik, and H. Jakobsen, Progress on free-standing and flow-through TiO2 nanotube membranes, Solar Energy Materials and Solar Cells, vol.98, pp.24-38, 2012.
DOI : 10.1016/j.solmat.2011.11.004

X. Fan, B. Feng, Z. Liu, J. Tan, W. Zhi et al., Fabrication of TiO2 nanotubes on porous titanium scaffold and biocompatibility evaluation in vitro and in vivo, J Biomed Mater Res A, vol.100, pp.3422-3429, 2012.
DOI : 10.1002/jbm.a.34268

V. Wilmowsky, C. Bauer, S. Roedl, S. Neukam, F. Schmuki et al., The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo, Clinical Oral Implants Research, vol.86, issue.3, pp.359-66, 2012.
DOI : 10.1016/S0092-8674(00)80133-6

N. Wang, H. Li, W. Lü, J. Li, J. Wang et al., Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs, Biomaterials, vol.32, issue.29, pp.6900-6911, 2011.
DOI : 10.1016/j.biomaterials.2011.06.023

L. Bjursten, L. Rasmusson, S. Oh, G. Smith, K. Brammer et al., Titanium dioxide nanotubes enhance bone bonding in vivo, J Biomed Mater Res A, vol.92, pp.1218-1242, 2010.
DOI : 10.1002/jbm.a.32463

Y. Sul, Electrochemical growth behavior, surface properties, and enhanced in vivo bone response of TiO2 nanotubes on microstructured surfaces of blasted, screw-shaped titanium implants, International Journal of Nanomedicine, vol.5, pp.87-100, 2010.
DOI : 10.2147/IJN.S8012

B. Boyan, D. Dean, C. Lohmann, D. Cochran, V. Sylvia et al., The Titanium-Bone Cell Interface In Vitro: The Role of the Surface in Promoting Osteointegration, Titan. Med, pp.561-85, 2001.
DOI : 10.1007/978-3-642-56486-4_17

S. Lamolle, M. Monjo, S. Lyngstadaas, J. Ellingsen, and H. Haugen, Titanium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance, J Biomed Mater Res A, vol.88, pp.581-589, 2009.
DOI : 10.1002/jbm.a.31898

L. Cooper, Y. Zhou, J. Takebe, J. Guo, A. Abron et al., Fluoride modification effects on osteoblast behavior and bone formation at TiO grit-blasted c.p. titanium endosseous implants, Biomaterials, vol.27, issue.6, pp.926-962, 2006.
DOI : 10.1016/j.biomaterials.2005.07.009

D. Cochran, D. Buser, C. Ten-bruggenkate, D. Weingart, T. Taylor et al., The use of reduced healing times on ITIR implants with a sandblasted and acid-etched (SLA) surface:. Early results from clinical trials on ITIR SLA implants, Clinical Oral Implants Research, vol.29, issue.2, pp.144-53, 2002.
DOI : 10.1002/jbm.820291213

D. Cochran, J. Jackson, J. Bernard, C. Ten-bruggenkate, D. Buser et al., A 5-year prospective multicenter study of early loaded titanium implants with a sandblasted and acid-etched surface, Int J Oral Maxillofac Implants, vol.26, pp.1324-1356, 2011.

D. Buser, R. Schenk, S. Steinemann, J. Fiorellini, C. Fox et al., Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs, Journal of Biomedical Materials Research, vol.3, issue.7, pp.889-902, 1991.
DOI : 10.1902/jop.1991.62.1.2

D. Sanctis, M. Vignoletti, F. Discepoli, N. Zucchelli, G. Sanz et al., Immediate implants at fresh extraction sockets: bone healing in four different implant systems, Journal of Clinical Periodontology, vol.36, issue.(Suppl.), pp.705-716, 2009.
DOI : 10.1111/j.1600-051X.2009.01427.x

K. Subramani, R. Jung, A. Molenberg, and C. Hammerle, Biofilm on dental implants: a review of the literature, Int J Oral Maxillofac Implants, vol.24, pp.616-642, 2009.

N. Durmus and T. Webster, Nanostructured titanium: the ideal material for improving orthopedic implant efficacy?, Nanomedicine, vol.92, issue.6, pp.791-794, 2012.
DOI : 10.1016/j.biomaterials.2011.04.040

S. Ahn, J. Han, B. Lim, and Y. Lim, Comparison of ultraviolet light-induced photocatalytic bactericidal effect on modified titanium implant surfaces, Int J Oral Maxillofac Implants, vol.26, pp.39-44, 2011.

G. Smith, L. Chamberlain, L. Faxius, G. Johnston, J. S. Bjursten et al., Soft tissue response to titanium dioxide nanotube modified implants, Acta Biomaterialia, vol.7, issue.8, pp.3209-3224, 2011.
DOI : 10.1016/j.actbio.2011.05.003