A. Farb, A. Burke, A. Tang, T. Liang, P. Mannan et al., Coronary Plaque Erosion Without Rupture Into a Lipid Core : A Frequent Cause of Coronary Thrombosis in Sudden Coronary Death, Circulation, vol.93, issue.7, pp.1354-1363, 1996.
DOI : 10.1161/01.CIR.93.7.1354

R. Virmani, F. Kolodgie, A. Burke, A. Farb, and S. Schwartz, Lessons From Sudden Coronary Death : A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.20, issue.5, pp.1262-1275, 2000.
DOI : 10.1161/01.ATV.20.5.1262

E. Durand, A. Scoazec, A. Lafont, J. Boddaert, A. Hajzen et al., In Vivo Induction of Endothelial Apoptosis Leads to Vessel Thrombosis and Endothelial Denudation: A Clue to the Understanding of the Mechanisms of Thrombotic Plaque Erosion, Circulation, vol.109, issue.21, pp.2503-2506, 2004.
DOI : 10.1161/01.CIR.0000130172.62481.90

O. Tricot, Z. Mallat, C. Heymes, J. Belmin, G. Leseche et al., Relation Between Endothelial Cell Apoptosis and Blood Flow Direction in Human Atherosclerotic Plaques, Circulation, vol.101, issue.21, pp.2450-2453, 2000.
DOI : 10.1161/01.CIR.101.21.2450

I. Cicha, A. Worner, K. Urschel, K. Beronov, M. Goppelt-struebe et al., Carotid Plaque Vulnerability, Stroke, vol.42, issue.12, pp.3502-3510, 2011.
DOI : 10.1161/STROKEAHA.111.627265

URL : http://stroke.ahajournals.org/content/strokeaha/42/12/3502.full.pdf

T. Sumi, A. Yamashita, S. Matsuda, S. Goto, K. Nishihira et al., Disturbed blood flow induces erosive injury to smooth muscle cell-rich neointima and promotes thrombus formation in rabbit femoral arteries, Journal of Thrombosis and Haemostasis, vol.67, issue.Suppl 1, pp.1394-1402, 2010.
DOI : 10.1161/01.CIR.101.5.570

A. Mullick, K. Soldau, W. Kiosses, T. Bell, . Iii et al., Increased endothelial expression of Toll-like receptor 2 at sites of disturbed blood flow exacerbates early atherogenic events, The Journal of Experimental Medicine, vol.123, issue.2, pp.373-383, 2008.
DOI : 10.1161/01.ATV.17.11.2891

K. Edfeldt, J. Swedenborg, G. Hansson, and Z. Yan, Expression of toll-like receptors in human atherosclerotic lesions: a possible pathway for plaque activation, Circulation, vol.105, pp.1158-1161, 2002.

K. Scheibner, M. Lutz, S. Boodoo, M. Fenton, J. Powell et al., Hyaluronan Fragments Act as an Endogenous Danger Signal by Engaging TLR2, The Journal of Immunology, vol.177, issue.2, pp.1272-1281, 2006.
DOI : 10.4049/jimmunol.177.2.1272

URL : http://www.jimmunol.org/content/jimmunol/177/2/1272.full.pdf

D. Jiang, J. Liang, J. Fan, S. Yu, S. Chen et al., Regulation of lung injury and repair by Toll-like receptors and hyaluronan, Nature Medicine, vol.183, issue.11, pp.1173-1179, 2005.
DOI : 10.1084/jem.183.5.2373

G. Ferrante, M. Nakano, F. Prati, G. Niccoli, M. Mallus et al., High Levels of Systemic Myeloperoxidase Are Associated With Coronary Plaque Erosion in Patients With Acute Coronary Syndromes: A Clinicopathological Study, Circulation, vol.122, issue.24, pp.2505-2513, 2010.
DOI : 10.1161/CIRCULATIONAHA.110.955302

M. Kretzler, A. Bruce, and M. Kaplan, Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus, J Immunol, vol.187, pp.538-552, 2011.

S. Sugiyama, K. Kugiyama, M. Aikawa, S. Nakamura, H. Ogawa et al., Hypochlorous Acid, a Macrophage Product, Induces Endothelial Apoptosis and Tissue Factor Expression: Involvement of Myeloperoxidase-Mediated Oxidant in Plaque Erosion and Thrombogenesis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.7, pp.1309-1314, 2004.
DOI : 10.1161/01.ATV.0000131784.50633.4f

A. Chow, J. Cena, and R. Schulz, Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature, British Journal of Pharmacology, vol.270, issue.Suppl 2, pp.189-205, 2007.
DOI : 10.1042/bj2680267

M. Giannotta, M. Trani, and E. Dejana, VE-Cadherin and Endothelial Adherens Junctions: Active Guardians of Vascular Integrity, Developmental Cell, vol.26, issue.5, pp.441-454, 2013.
DOI : 10.1016/j.devcel.2013.08.020

E. Falk, P. Shah, and V. Fuster, Coronary Plaque Disruption, Circulation, vol.92, issue.3, pp.657-671, 1995.
DOI : 10.1161/01.CIR.92.3.657

A. Gupta, M. Joshi, M. Philippova, P. Erne, P. Hasler et al., Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death, FEBS Letters, vol.110, issue.14, pp.3193-3197, 2010.
DOI : 10.1182/blood-2008-11-188375

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2010.06.006/pdf

L. Hamann, A. Koch, S. Sur, N. Hoefer, C. Glaeser et al., Association of a common TLR-6 polymorphism with coronary artery disease ??? implications for healthy ageing?, Immunity & Ageing, vol.10, issue.1, p.43, 2013.
DOI : 10.1093/bioinformatics/btl423

K. Michelsen, M. Wong, P. Shah, W. Zhang, J. Yano et al., Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E, Proceedings of the National Academy of Sciences, vol.163, issue.7, pp.10679-10684, 2004.
DOI : 10.1126/science.1698311

L. Curtiss, A. Black, D. Bonnet, and P. Tobias, Atherosclerosis induced by endogenous and exogenous toll-like receptor (TLR)1 or TLR6 agonists, Journal of Lipid Research, vol.25, issue.10, pp.2126-2132, 2012.
DOI : 10.1038/clpt.2009.311

URL : http://www.jlr.org/content/53/10/2126.full.pdf

M. Madan and S. Amar, Toll-Like Receptor-2 Mediates Diet and/or Pathogen Associated Atherosclerosis: Proteomic Findings, PLoS ONE, vol.14, issue.9, p.3204, 2008.
DOI : 10.1371/journal.pone.0003204.s007

URL : http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0003204&type=printable

C. Monaco, S. Gregan, T. Navin, B. Foxwell, A. Davies et al., Toll-Like Receptor-2 Mediates Inflammation and Matrix Degradation in Human Atherosclerosis, Circulation, vol.120, issue.24, pp.2462-2469, 2009.
DOI : 10.1161/CIRCULATIONAHA.109.851881

URL : http://circ.ahajournals.org/content/circulationaha/120/24/2462.full.pdf

G. Lee, Y. Chang, J. Wu, M. Wu, K. Wu et al., TLR 2 Induces Vascular Smooth Muscle Cell Migration Through cAMP Response Element-Binding Protein-Mediated Interleukin-6 Production, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.11, pp.2751-2760, 2012.
DOI : 10.1161/ATVBAHA.112.300302

URL : http://atvb.ahajournals.org/content/atvbaha/32/11/2751.full.pdf

P. Keyel, O. Tkacheva, A. Larregina, and R. Salter, Coordinate Stimulation of Macrophages by Microparticles and TLR Ligands Induces Foam Cell Formation, The Journal of Immunology, vol.189, issue.9, pp.4621-4629, 2012.
DOI : 10.4049/jimmunol.1200828

M. Blich, A. Golan, G. Arvatz, A. Sebbag, I. Shafat et al., Macrophage Activation by Heparanase Is Mediated by TLR-2 and TLR-4 and Associates With Plaque Progression, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.33, issue.2, pp.56-65, 2013.
DOI : 10.1161/ATVBAHA.112.254961

URL : http://atvb.ahajournals.org/content/atvbaha/33/2/e56.full.pdf

K. Wilhelmsen, K. Mesa, A. Prakash, F. Xu, and J. Hellman, Activation of endothelial TLR2 by bacterial lipoprotein upregulates proteins specific for the neutrophil response, Innate Immunity, vol.139, issue.4, pp.602-616, 2012.
DOI : 10.1089/jir.2005.25.241

H. Shin, F. Xu, A. Bagchi, E. Herrup, A. Prakash et al., Bacterial Lipoprotein TLR2 Agonists Broadly Modulate Endothelial Function and Coagulation Pathways In Vitro and In Vivo, The Journal of Immunology, vol.186, issue.2, pp.1119-1130, 2011.
DOI : 10.4049/jimmunol.1001647

T. Seimon, M. Nadolski, X. Liao, J. Magallon, M. Nguyen et al., Atherogenic Lipids and Lipoproteins Trigger CD36-TLR2-Dependent Apoptosis in Macrophages Undergoing Endoplasmic Reticulum Stress, Cell Metabolism, vol.12, issue.5, pp.467-482, 2010.
DOI : 10.1016/j.cmet.2010.09.010

A. Kadl, P. Sharma, W. Chen, R. Agrawal, A. Meher et al., Oxidized phospholipid-induced inflammation is mediated by Toll-like receptor 2, Free Radical Biology and Medicine, vol.51, issue.10, pp.1903-1909, 2011.
DOI : 10.1016/j.freeradbiomed.2011.08.026

URL : http://europepmc.org/articles/pmc3197756?pdf=render

O. Soehnlein, Multiple Roles for Neutrophils in Atherosclerosis, Circulation Research, vol.110, issue.6, pp.875-888, 2012.
DOI : 10.1161/CIRCRESAHA.111.257535

K. Taylor, J. Trowbridge, J. Rudisill, C. Termeer, J. Simon et al., Hyaluronan Fragments Stimulate Endothelial Recognition of Injury through TLR4, Journal of Biological Chemistry, vol.6, issue.17, pp.17079-17084, 2004.
DOI : 10.1053/joca.2000.0398

L. Butler, G. Rainger, and G. Nash, A role for the endothelial glycosaminoglycan hyaluronan in neutrophil recruitment by endothelial cells cultured for prolonged periods, Experimental Cell Research, vol.315, issue.19, pp.3433-3441, 2009.
DOI : 10.1016/j.yexcr.2009.08.012

B. Mcdonald, E. Mcavoy, F. Lam, V. Gill, C. De-la-motte et al., Interaction of CD44 and hyaluronan is the dominant mechanism for neutrophil sequestration in inflamed liver sinusoids, The Journal of Experimental Medicine, vol.163, issue.4, pp.915-927, 2008.
DOI : 10.1002/(SICI)1521-4141(199806)28:06<1745::AID-IMMU1745>3.0.CO;2-5

J. Xu, X. Zhang, R. Pelayo, M. Monestier, C. Ammollo et al., Extracellular histones are major mediators of death in sepsis, Nature Medicine, vol.13, issue.11, pp.1318-1321, 2009.
DOI : 10.1161/01.ATV.13.7.1090

M. Saffarzadeh, C. Juenemann, M. Queisser, G. Lochnit, G. Barreto et al., Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones, PLoS ONE, vol.66, issue.2, p.32366, 2012.
DOI : 10.1371/journal.pone.0032366.s005

T. Fuchs, A. Brill, and D. Wagner, Neutrophil Extracellular Trap (NET) Impact on Deep Vein Thrombosis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.32, issue.8, pp.1777-1783, 2012.
DOI : 10.1161/ATVBAHA.111.242859

URL : http://atvb.ahajournals.org/content/atvbaha/32/8/1777.full.pdf

P. Libby, Mechanisms of acute coronary syndromes, N Engl J Med, vol.369, pp.883-884, 2013.