F. A. Bastos and B. M. Kummerer, Evidence for Congenital Zika Virus Infection from Neutralizing Antibody Titers in Maternal Sera, Northeastern Brazil, J. Infect. Dis, vol.2017, issue.216, pp.1501-1504

D. Descamps and F. Damond, Leparc-Goffart, I. Evidence of Sexual Transmission of Zika Virus, N. Engl. J. Med, vol.374, pp.2195-2198, 2016.

N. K. Duggal, J. M. Ritter, S. E. Pestorius, S. R. Zaki, B. S. Davis et al., Frequent Zika Virus Sexual Transmission and Prolonged Viral RNA Shedding in an Immunodeficient Mouse Model, Cell Reports, vol.18, issue.7, pp.1751-1760, 2017.
DOI : 10.1016/j.celrep.2017.01.056

E. A. Caine and V. Salazar, Zika virus infection damages the testes in mice, Nature, vol.2016, issue.540, pp.438-442

W. Ma, S. Li, S. Ma, L. Jia, F. Zhang et al., Zika Virus Causes Testis Damage and Leads to Male Infertility in Mice, Cell, vol.168, issue.3, p.542, 2017.
DOI : 10.1016/j.cell.2017.01.009

S. S. Hasan, M. Sevvana, R. J. Kuhn, M. G. Rossmann, C. M. Rice et al., Structural biology of Zika virus and other flaviviruses, CrossRef] [PubMed] 8. Lindenbach, pp.13-20, 2003.
DOI : 10.1016/j.antiviral.2016.12.016

M. D. Fernandez-garcia, M. Mazzon, M. Jacobs, and A. Amara, Pathogenesis of Flavivirus Infections: Using and Abusing the Host Cell, Cell Host & Microbe, vol.5, issue.4, pp.318-328, 2009.
DOI : 10.1016/j.chom.2009.04.001

URL : https://hal.archives-ouvertes.fr/pasteur-00429869

A. D. Haddow, A. J. Schuh, C. Y. Yasuda, M. R. Kasper, V. Heang et al., Genetic Characterization of Zika Virus Strains: Geographic Expansion of the Asian Lineage, PLoS Neglected Tropical Diseases, vol.52, issue.Pt 10, p.1477
DOI : 10.1371/journal.pntd.0001477.t003

M. Giovanetti, T. Milano, L. C. Alcantara, L. Carcangiu, E. Cella et al., Zika Virus spreading in South America: Evolutionary analysis of emerging neutralizing resistant Phe279Ser strains, Asian Pacific Journal of Tropical Medicine, vol.9, issue.5, pp.445-452
DOI : 10.1016/j.apjtm.2016.03.028

R. S. Adcock, Y. K. Chu, J. E. Golden, and D. H. Chung, Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay, Antiviral Research, vol.138, pp.47-56, 2017.
DOI : 10.1016/j.antiviral.2016.11.018

N. J. Barrows, R. K. Campos, S. T. Powell, K. R. Prasanth, G. Schott-lerner et al., A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection, Cell Host & Microbe, vol.20, issue.2, pp.259-270, 2016.
DOI : 10.1016/j.chom.2016.07.004

J. C. Saiz and M. A. Martin-acebes, ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.61, issue.6, p.61, 2017.
DOI : 10.1128/AAC.00411-17

J. G. Julander, V. Siddharthan, J. Evans, R. Taylor, K. Tolbert et al., Efficacy of the broad-spectrum antiviral compound BCX4430 against Zika virus in cell culture and in a mouse model, Antiviral Research, vol.137, pp.2017-2031
DOI : 10.1016/j.antiviral.2016.11.003

A. Marttorelli, A. C. Ferreira, and G. Barbosa-lima, The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication. Sci, 2017.

D. Estoppey, C. M. Lee, M. Janoschke, B. H. Lee, K. F. Wan et al., The Natural Product Cavinafungin Selectively Interferes with Zika and Dengue Virus Replication by Inhibition of the Host Signal Peptidase. Cell Rep, pp.451-460, 2017.

K. Zandi, Antiviral activity of selected flavonoids against Chikungunya virus, Antivir. Res, vol.133, pp.50-61, 2016.

K. W. Martin and E. Ernst, Antiviral agents from plants and herbs: a systematic review, Focus on Alternative and Complementary Therapies, vol.8, issue.1, pp.77-90, 2003.
DOI : 10.1111/j.2042-7166.2003.tb05815.x

D. Santos, A. E. Kuster, R. M. Yamamoto, K. A. Salles, T. S. Campos et al., Quercetin and quercetin 3-O-glycosides from Bauhinia longifolia (Bong.) Steud. show anti-Mayaro virus activity, Parasites & Vectors, vol.7, issue.1, p.130
DOI : 10.1186/1756-3305-7-130

R. Khachatoorian, V. Arumugaswami, S. Raychaudhuri, G. K. Yeh, E. M. Maloney et al., Divergent antiviral effects of bioflavonoids on the hepatitis C virus life cycle, Virology, vol.433, issue.2, pp.346-355, 2012.
DOI : 10.1016/j.virol.2012.08.029

Y. Kim, S. Narayanan, and K. O. Chang, Inhibition of influenza virus replication by plant-derived isoquercetin, Antiviral Research, vol.88, issue.2, pp.227-235, 2010.
DOI : 10.1016/j.antiviral.2010.08.016

H. J. Lim, T. T. Nguyen, N. M. Kim, J. S. Park, T. S. Jang et al., Inhibitory effect of flavonoids against NS2B-NS3 protease of ZIKA virus and their structure activity relationship, Biotechnology Letters, vol.5, issue.3, pp.415-421, 2017.
DOI : 10.1038/emi.2016.48

S. S. Lulu, A. Thabitha, S. Vino, and A. Priya, Naringenin and quercetin ??? potential anti-HCV agents for NS2 protease targets, Natural Product Research, vol.68, issue.4, pp.464-468, 2016.
DOI : 10.1016/j.biopha.2008.01.007

B. H. Havsteen, The biochemistry and medical significance of the flavonoids, Pharmacology & Therapeutics, vol.96, issue.2-3, pp.67-202, 2002.
DOI : 10.1016/S0163-7258(02)00298-X

W. A. Verri, F. T. Vicentini, M. M. Baracat, S. R. Georgetti, R. D. Cardoso et al., Flavonoids as Anti-Inflammatory and Analgesic Drugs: Mechanisms of Action and Perspectives in the Development of Pharmaceutical Forms, Studies in Natural Products Chemistry, pp.297-330, 2012.
DOI : 10.1016/B978-0-444-53836-9.00026-8

A. Dayem, A. Choi, H. Y. Kim, Y. B. Cho, and S. G. , Antiviral Effect of Methylated Flavonol Isorhamnetin against Influenza, PLOS ONE, vol.1, issue.2, p.121610, 2015.
DOI : 10.1371/journal.pone.0121610.s002

N. Calland, M. E. Sahuc, S. Belouzard, V. Pene, P. Bonnafous et al., ABSTRACT, Journal of Virology, vol.89, issue.19, pp.10053-10063, 2015.
DOI : 10.1128/JVI.01473-15

S. Cotin, C. A. Calliste, M. C. Mazeron, S. Hantz, J. L. Duroux et al., Eight flavonoids and their potential as inhibitors of human cytomegalovirus replication, Antiviral Research, vol.96, issue.2, pp.181-186, 2012.
DOI : 10.1016/j.antiviral.2012.09.010

URL : https://hal.archives-ouvertes.fr/hal-01221310

S. Frabasile, A. C. Koishi, D. Kuczera, G. F. Silveira, W. A. Verri et al., The citrus flavanone naringenin impairs dengue virus replication in human cells. Sci, 2017.

U. Grienke, M. Richter, E. Walther, A. Hoffmann, J. Kirchmair et al., Discovery of prenylated flavonoids with dual activity against influenza virus and Streptococcus pneumoniae, Scientific Reports, vol.95, issue.1, p.27156
DOI : 10.1016/S0166-0934(01)00305-6

B. C. Mounce, T. Cesaro, L. Carrau, T. Vallet, and M. Vignuzzi, Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding, Antiviral Research, vol.142, pp.148-157, 2017.
DOI : 10.1016/j.antiviral.2017.03.014

URL : https://doi.org/10.1016/j.antiviral.2017.03.014

N. Sharma, A. Murali, S. K. Singh, and R. Giri, Epigallocatechin gallate, an active green tea compound inhibits the Zika virus entry into host cells via binding the envelope protein, International Journal of Biological Macromolecules, vol.104, pp.1046-1054, 2017.
DOI : 10.1016/j.ijbiomac.2017.06.105

G. Wong, S. He, V. Siragam, Y. Bi, M. Mbikay et al., Antiviral activity of quercetin-3-??-O-D-glucoside against Zika virus infection, Virologica Sinica, vol.110, issue.6, pp.545-547, 2017.
DOI : 10.1590/0074-02760150192

E. Frumence, M. Roche, P. Krejbich-trotot, C. El-kalamouni, B. Nativel et al., The South Pacific epidemic strain of Zika virus replicates efficiently in human epithelial A549 cells leading to IFN-?? production and apoptosis induction, Virology, vol.493, pp.217-226, 2016.
DOI : 10.1016/j.virol.2016.03.006

G. Gadea, S. Bos, P. Krejbich-trotot, E. Clain, W. Viranaicken et al., A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene, Virology, vol.497, pp.157-162, 2016.
DOI : 10.1016/j.virol.2016.07.015

S. Bos, W. Viranaicken, J. Turpin, C. El-kalamouni, M. Roche et al., The structural proteins of epidemic and historical strains of Zika virus differ in their ability to initiate viral infection in human host cells, Virology, vol.516, pp.265-273, 2018.
DOI : 10.1016/j.virol.2017.12.003

URL : https://hal.archives-ouvertes.fr/hal-01702657

V. Jaime, M. F. Redko, F. Muschietti, L. V. Campos, R. H. Martino et al., In vitro antiviral activity of plant extracts from Asteraceae medicinal plants, Virology Journal, vol.10, issue.1, p.245, 2013.
DOI : 10.1016/j.ejmech.2007.10.023

K. Valentova, J. Vrba, M. Bancirova, J. Ulrichova, and V. Kren, Isoquercitrin: Pharmacology, toxicology, and metabolism, Food and Chemical Toxicology, vol.68, pp.267-282, 2014.
DOI : 10.1016/j.fct.2014.03.018

X. Qiu, A. Kroeker, S. He, R. Kozak, J. Audet et al., ABSTRACT, Antimicrobial Agents and Chemotherapy, vol.60, issue.9, pp.5182-5188, 2016.
DOI : 10.1128/AAC.00307-16

L. B. Talarico, C. A. Pujol, R. G. Zibetti, P. C. Faria, M. D. Noseda et al., The antiviral activity of sulfated polysaccharides against dengue virus is dependent on virus serotype and host cell, Antiviral Research, vol.66, issue.2-3, pp.103-110, 2005.
DOI : 10.1016/j.antiviral.2005.02.001

A. C. Koishi, P. R. Zanello, E. M. Bianco, and J. Bordignon, Screening of Dengue Virus Antiviral Activity of Marine Seaweeds by an In Situ Enzyme-Linked Immunosorbent Assay, PLoS ONE, vol.35, issue.12, p.51089, 2012.
DOI : 10.1371/journal.pone.0051089.s002

L. T. Lin, T. Y. Chen, C. Y. Chung, R. S. Noyce, T. B. Grindley et al., Hydrolyzable Tannins (Chebulagic Acid and Punicalagin) Target Viral Glycoprotein-Glycosaminoglycan Interactions To Inhibit Herpes Simplex Virus 1 Entry and Cell-to-Cell Spread, Journal of Virology, vol.85, issue.9, pp.4386-4398, 2011.
DOI : 10.1128/JVI.01492-10

URL : http://jvi.asm.org/content/85/9/4386.full.pdf

W. Viranaicken, B. Nativel, P. Krejbich-trotot, W. Harrabi, S. Bos et al., ClearColi BL21(DE3)-based expression of Zika virus antigens illustrates a rapid method of antibody production against emerging pathogens, Biochimie, vol.142, pp.179-182, 2017.
DOI : 10.1016/j.biochi.2017.09.011

URL : https://hal.archives-ouvertes.fr/hal-01689690