A. Abraham, F. Pedregosa, M. Eickenberg, P. Gervais, A. Mueller et al., Machine learning for neuroimaging with scikit-learn, Frontiers in Neuroinformatics, vol.8, p.14, 2014.
DOI : 10.3389/fninf.2014.00014

URL : https://hal.archives-ouvertes.fr/hal-01093971

J. L. Andersson, M. Jenkinson, S. Smith, and . Others, Non-linear registration, aka Spatial normalisation FMRIB technical report TR07JA2, pp.1-21, 2007.

A. Bowring, C. Maumet, and T. Nichols, Exploring the Impact of Analysis Software on Task fMRI Results, 2018.
DOI : 10.1101/285585

URL : https://hal.archives-ouvertes.fr/inserm-01760535

J. Carp, Optimizing the order of operations for movement scrubbing: Comment on Power et al., NeuroImage, vol.76, pp.436-438, 2013.
DOI : 10.1016/j.neuroimage.2011.12.061

J. Carp, On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility of fMRI Experiments, Frontiers in Neuroscience, vol.6, p.149, 2012.
DOI : 10.3389/fnins.2012.00149

J. Carp, The secret lives of experiments: Methods reporting in the fMRI literature, NeuroImage, vol.63, issue.1, pp.289-300, 2012.
DOI : 10.1016/j.neuroimage.2012.07.004

R. W. Cox, AFNI: Software for Analysis and Visualization of Functional Magnetic Resonance Neuroimages, Computers and Biomedical Research, vol.29, issue.3, pp.162-173, 1996.
DOI : 10.1006/cbmr.1996.0014

A. M. Dale, B. Fischl, and M. I. Sereno, Cortical Surface-Based Analysis, NeuroImage, vol.9, issue.2, pp.179-194, 1999.
DOI : 10.1006/nimg.1998.0395

A. Eklund, T. E. Nichols, and H. Knutsson, Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates, Proceedings of the National Academy of Sciences, vol.4, issue.3, pp.7900-7905, 2016.
DOI : 10.1016/j.neuroimage.2015.04.016

URL : http://www.pnas.org/content/113/28/7900.full.pdf

E. D. Foster and A. D. , Open Science Framework (OSF), J. Med. Libr. Assoc, vol.105, p.203, 2017.

T. Glatard, L. B. Lewis, R. F. Da-silva, R. Adalat, N. Beck et al., Reproducibility of neuroimaging analyses across operating systems, Frontiers in Neuroinformatics, vol.9
DOI : 10.3389/fninf.2015.00012

URL : https://hal.archives-ouvertes.fr/hal-01207394

K. J. Gorgolewski, G. Varoquaux, G. Rivera, Y. Schwarz, S. S. Ghosh et al., a web-based repository for collecting and sharing unthresholded statistical maps of the human brain, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01134573

E. H. Gronenschild, P. Habets, H. I. Jacobs, R. Mengelers, N. Rozendaal et al., The Effects of FreeSurfer Version, Workstation Type, and Macintosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements, PLoS ONE, vol.131, issue.6, p.38234, 2012.
DOI : 10.1371/journal.pone.0038234.s006

J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, vol.9, issue.3, pp.90-95, 2007.
DOI : 10.1109/MCSE.2007.55

J. P. Ioannidis, Why Most Published Research Findings Are False, PLoS Medicine, vol.13, issue.8, p.124, 2005.
DOI : 10.1371/journal.pmed.0020124.t004

M. Jenkinson, P. Bannister, M. Brady, and S. Smith, Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images, NeuroImage, vol.17, issue.2, pp.825-841, 2002.
DOI : 10.1006/nimg.2002.1132

M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, FSL, NeuroImage, vol.62, issue.2, pp.782-790, 2012.
DOI : 10.1016/j.neuroimage.2011.09.015

URL : https://hal.archives-ouvertes.fr/inserm-01149484

T. Kluyver, B. Ragan-kelley, F. Pérez, B. E. Granger, M. Bussonnier et al., Jupyter Notebooks-a publishing format for reproducible computational workflows, pp.87-90

T. E. Lund, M. D. Nørgaard, E. Rostrup, J. B. Rowe, and O. B. Paulson, Motion or activity: their role in intra- and inter-subject variation in fMRI, NeuroImage, vol.26, issue.3, pp.960-964, 2005.
DOI : 10.1016/j.neuroimage.2005.02.021

W. Mckinney and . Others, Data structures for statistical computing in python, Proceedings of the 9th Python in Science Conference, pp.51-56, 2010.

J. M. Moran, E. Jolly, and J. P. Mitchell, Social-Cognitive Deficits in Normal Aging, Journal of Neuroscience, vol.32, issue.16, pp.5553-5561, 2012.
DOI : 10.1523/JNEUROSCI.5511-11.2012

T. E. Nichols and A. P. Holmes, Nonparametric permutation tests for functional neuroimaging: A primer with examples, Human Brain Mapping, vol.4, issue.1, pp.1-25, 2002.
DOI : 10.1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O

A. Padmanabhan, C. F. Geier, S. J. Ordaz, T. Teslovich, and B. Luna, Developmental changes in brain function underlying the influence of reward processing on inhibitory control, Developmental Cognitive Neuroscience, vol.1, issue.4, pp.517-529, 2011.
DOI : 10.1016/j.dcn.2011.06.004

R. D. Peng, Reproducible Research in Computational Science, Science, vol.467, issue.7317, pp.1226-1227, 2011.
DOI : 10.1038/467753a

W. D. Penny, K. J. Friston, J. T. Ashburner, S. J. Kiebel, and T. E. Nichols, Statistical Parametric Mapping: The Analysis of Functional Brain Images, 2011.

R. A. Poldrack, C. I. Baker, J. Durnez, K. J. Gorgolewski, P. M. Matthews et al., Scanning the horizon: towards transparent and reproducible neuroimaging research, Nature Reviews Neuroscience, vol.80, issue.2, pp.115-126, 2017.
DOI : 10.1016/j.neuroimage.2013.05.033

R. A. Poldrack, D. M. Barch, J. P. Mitchell, T. D. Wager, A. D. Wagner et al., Toward open sharing of task-based fMRI data: the OpenfMRI project, Frontiers in Neuroinformatics, vol.7, p.12, 2013.
DOI : 10.3389/fninf.2013.00012

T. Schonberg, C. R. Fox, J. A. Mumford, E. Congdon, C. Trepel et al., Decreasing Ventromedial Prefrontal Cortex Activity During Sequential Risk-Taking: An fMRI Investigation of the Balloon Analog Risk Task, Frontiers in Neuroscience, vol.6, p.80, 2012.
DOI : 10.3389/fnins.2012.00080

P. Skudlarski, R. T. Constable, and J. C. Gore, ROC Analysis of Statistical Methods Used in Functional MRI: Individual Subjects, NeuroImage, vol.9, issue.3, pp.311-329, 1999.
DOI : 10.1006/nimg.1999.0402

S. M. Smith, Fast robust automated brain extraction, Human Brain Mapping, vol.20, issue.3, pp.143-155, 2002.
DOI : 10.1109/42.906424

URL : http://onlinelibrary.wiley.com/doi/10.1002/hbm.10062/pdf

S. C. Strother, J. Anderson, L. K. Hansen, U. Kjems, R. Kustra et al., The Quantitative Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data Analysis Framework, NeuroImage, vol.15, issue.4, pp.747-771, 2002.
DOI : 10.1006/nimg.2001.1034

T. D. Wager, M. A. Lindquist, T. E. Nichols, H. Kober, and J. X. Van-snellenberg, Evaluating the consistency and specificity of neuroimaging data using meta-analysis, NeuroImage, vol.45, issue.1, pp.210-231, 2009.
DOI : 10.1016/j.neuroimage.2008.10.061

S. Walt, . Van-der, S. C. Colbert, and G. Varoquaux, The NumPy Array: A Structure for Efficient Numerical Computation, Computing in Science & Engineering, vol.13, issue.2, pp.22-30, 2011.
DOI : 10.1109/MCSE.2011.37

URL : https://hal.archives-ouvertes.fr/inria-00564007

A. M. Winkler, G. R. Ridgway, M. A. Webster, S. M. Smith, and T. E. Nichols, Permutation inference for the general linear model, NeuroImage, vol.92, pp.381-397, 2014.
DOI : 10.1016/j.neuroimage.2014.01.060

M. W. Woolrich, B. D. Ripley, M. Brady, and S. M. Smith, Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data, NeuroImage, vol.14, issue.6, pp.1370-1386, 2001.
DOI : 10.1006/nimg.2001.0931