D. G. Hardie, F. A. Ross, and S. A. Hawley, AMP-Activated Protein Kinase: A Target for Drugs both Ancient and Modern, Chemistry & Biology, vol.19, issue.10, pp.1222-1258, 2012.
DOI : 10.1016/j.chembiol.2012.08.019

D. G. Hardie and M. L. Ashford, AMPK: Regulating Energy Balance at the Cellular and Whole Body Levels, Physiology, vol.269, issue.2, pp.99-107, 2014.
DOI : 10.1073/pnas.252625599

W. W. Winder and D. G. Hardie, AMP-activated protein kinase, a metabolic master switch: possible roles in Type 2 diabetes, American Journal of Physiology-Endocrinology and Metabolism, vol.270, issue.33, pp.1-10, 1999.
DOI : 10.1016/S0898-6568(97)00070-3

. Wojtaszewski, Intact Regulation of the AMPK Signaling Network in Response to Exercise and Insulin in Skeletal Muscle of Male Patients With Type 2 Diabetes: Illumination of AMPK Activation in Recovery From Exercise, Diabetes, vol.65, issue.5, pp.1219-1249, 2016.

D. G. Hardie and S. C. Lin, AMP-activated protein kinase ??? not just an energy sensor, F1000Research, vol.334, pp.1000-1006
DOI : 10.1126/science.1207056

URL : https://f1000research.com/articles/6-1724/v1/pdf

S. C. Lin and D. G. Hardie, AMPK: Sensing Glucose as well as Cellular Energy Status, Cell Metabolism, vol.27, issue.2, 2017.
DOI : 10.1016/j.cmet.2017.10.009

D. G. Hardie, B. E. Schaffer, and A. Brunet, AMPK: An Energy-Sensing Pathway with Multiple Inputs and Outputs, Trends in Cell Biology, vol.26, issue.3, pp.190-201, 2016.
DOI : 10.1016/j.tcb.2015.10.013

URL : http://discovery.dundee.ac.uk/ws/files/10932724/DGH_TICB_2016.pdf

C. S. Zhang, S. A. Hawley, Y. Zong, M. Li, Z. Wang et al., Fructose-1,6-bisphosphate and aldolase mediate glucose sensing by AMPK, Nature, vol.139, issue.7665, pp.112-116, 2017.
DOI : 10.1016/j.cell.2009.12.008

URL : http://europepmc.org/articles/pmc5544942?pdf=render

E. A. Day, R. J. Ford, and G. R. Steinberg, AMPK as a Therapeutic Target for Treating Metabolic Diseases, Trends in Endocrinology & Metabolism, vol.28, issue.8, pp.545-560, 2017.
DOI : 10.1016/j.tem.2017.05.004

D. Garcia and R. J. Shaw, AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance, Molecular Cell, vol.66, issue.6, pp.789-800, 2017.
DOI : 10.1016/j.molcel.2017.05.032

M. D. Fullerton, AMP-activated protein kinase and its multifaceted regulation of hepatic metabolism, Current Opinion in Lipidology, vol.27, issue.2, pp.172-80, 2016.
DOI : 10.1097/MOL.0000000000000273

I. P. Salt and D. G. Hardie, AMP-Activated Protein Kinase, Circulation Research, vol.120, issue.11, pp.1825-1841, 2017.
DOI : 10.1161/CIRCRESAHA.117.309633

T. Lang, L. Yu, Q. Tu, J. Jiang, Z. Chen et al., Molecular Cloning, Genomic Organization, and Mapping of PRKAG2, a Heart Abundant ??2 Subunit of 5???-AMP-Activated Protein Kinase, to Human Chromosome 7q36, Genomics, vol.70, issue.2, pp.258-63, 2000.
DOI : 10.1006/geno.2000.6376

K. Pinter, R. T. Grignani, G. Czibik, H. Farza, H. Watkins et al., Embryonic expression of AMPK ?? subunits and the identification of a novel ??2 transcript variant in adult heart, Journal of Molecular and Cellular Cardiology, vol.53, issue.3, pp.342-351, 2012.
DOI : 10.1016/j.yjmcc.2012.05.017

S. A. Hawley, J. Boudeau, J. L. Reid, K. J. Mustard, L. Udd et al., Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade, J Biol, vol.2, issue.28, 2003.

M. Wallimann, D. Carlson, and . Carling, LKB1 is the upstream kinase in the AMP-activated protein kinase cascade, Curr Biol, vol.13, issue.22, pp.2004-2012, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00390855

R. J. Shaw, M. Kosmatka, N. Bardeesy, R. L. Hurley, L. A. Witters et al., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress, Proceedings of the National Academy of Sciences, vol.278, issue.29, pp.3329-3364, 2004.
DOI : 10.1074/jbc.M300318200

S. A. Hawley, D. A. Pan, K. J. Mustard, L. Ross, J. Bain et al., Calmodulin-dependent protein kinase kinase-?? is an alternative upstream kinase for AMP-activated protein kinase, Cell Metabolism, vol.2, issue.1, pp.9-19, 2005.
DOI : 10.1016/j.cmet.2005.05.009

A. Woods, K. Dickerson, R. Heath, S. P. Hong, M. Momcilovic et al., Ca2+/calmodulin-dependent protein kinase kinase-?? acts upstream of AMP-activated protein kinase in mammalian cells, Cell Metabolism, vol.2, issue.1, pp.21-33, 2005.
DOI : 10.1016/j.cmet.2005.06.005

R. L. Hurley, K. A. Anderson, J. M. Franzone, B. E. Kemp, A. R. Means et al., /Calmodulin-dependent Protein Kinase Kinases Are AMP-activated Protein Kinase Kinases, Journal of Biological Chemistry, vol.111, issue.32, pp.29060-29066, 2005.
DOI : 10.1007/s00294-005-0576-2

URL : http://www.jbc.org/content/280/32/29060.full.pdf

S. M. Jeon, Regulation and function of AMPK in physiology and diseases, Experimental & Molecular Medicine, vol.3, issue.7, p.245, 2016.
DOI : 10.1158/1940-6207.CAPR-10-0157

K. Sakamoto, A. Mccarthy, D. Smith, K. A. Green, D. Grahame-hardie et al., Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction, The EMBO Journal, vol.108, issue.10, pp.24-1810, 2005.
DOI : 10.1152/japplphysiol.00167.2002

A. Ashworth, D. R. Jovanovic, L. Alessi, and . Bertrand, Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1, Am J Physiol Endocrinol Metab, vol.290, issue.5, pp.780-788, 2006.

M. Xie, D. Zhang, J. R. Dyck, Y. Li, H. Zhang et al., A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway, Proceedings of the National Academy of Sciences, vol.287, issue.23, pp.17378-83, 2006.
DOI : 10.1074/jbc.271.23.13675

. Jaattela, TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells, EMBO J, vol.28, issue.6, pp.677-85, 2009.

E. Brenner and . Seki, TAK1-mediated autophagy and fatty acid oxidation prevent hepatosteatosis and tumorigenesis, J Clin Invest, vol.124, issue.8, pp.3566-78, 2014.

L. Garcia-haro, M. A. Garcia-gimeno, D. Neumann, M. Beullens, M. Bollen et al., The PP1-R6 protein phosphatase holoenzyme is involved in the glucose-induced dephosphorylation and inactivation of AMPactivated protein kinase, a key regulator of insulin secretion, MIN6 beta cells, pp.24-5080, 2010.

L. Chen, Z. H. Jiao, L. S. Zheng, Y. Y. Zhang, S. T. Xie et al., Structural insight into the autoinhibition mechanism of AMP-activated protein kinase, Nature, vol.186, issue.7250, pp.1146-1155, 2009.
DOI : 10.1172/JCI19874

L. Chen, F. J. Xin, J. Wang, J. Hu, Y. Y. Zhang et al., Conserved regulatory elements in AMPK, Nature, vol.472, issue.7453, pp.8-10, 2013.
DOI : 10.1038/nature09932

F. J. Xin, J. Wang, R. Q. Zhao, Z. X. Wang, and J. W. Wu, Coordinated regulation of AMPK activity by multiple elements in the ??-subunit, Cell Research, vol.23, issue.10, pp.1237-1277, 2013.
DOI : 10.1016/j.str.2011.01.018

R. L. Hurley, L. K. Barre, S. D. Wood, K. A. Anderson, B. E. Kemp et al., Regulation of AMP-activated Protein Kinase by Multisite Phosphorylation in Response to Agents That Elevate Cellular cAMP, Journal of Biological Chemistry, vol.53, issue.Suppl. 3, pp.36662-72, 2006.
DOI : 10.2337/diabetes.53.1.122

N. Djouder, R. D. Tuerk, M. Suter, P. Salvioni, R. F. Thali et al., PKA phosphorylates and inactivates AMPK?? to promote efficient lipolysis, The EMBO Journal, vol.1791, issue.2, pp.469-81, 2010.
DOI : 10.1016/j.bbalip.2008.10.005

URL : http://emboj.embopress.org/content/embojnl/29/2/469.full.pdf

S. A. Hawley, F. A. Ross, G. J. Gowans, P. Tibarewal, N. R. Leslie et al., Phosphorylation by Akt within the ST loop of AMPK-??1 down-regulates its activation in tumour cells, Biochemical Journal, vol.266, issue.2, pp.275-87, 2014.
DOI : 10.1158/1940-6207.CAPR-10-0157

L. Carling, M. H. Hue, and . Rider, Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMPactivated protein kinase alpha-subunits in heart via hierarchical phosphorylation of Ser485, J Biol Chem, vol.491, issue.2819, pp.5335-5375, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00390879

Y. Dagon, E. Hur, B. Zheng, K. Wellenstein, L. C. Cantley et al., p70S6 Kinase Phosphorylates AMPK on Serine 491 to Mediate Leptin's Effect on Food Intake, Cell Metabolism, vol.16, issue.1, pp.70-76, 2012.
DOI : 10.1016/j.cmet.2012.05.010

T. Suzuki, D. Bridges, D. Nakada, G. Skiniotis, S. J. Morrison et al., Inhibition of AMPK Catabolic Action by GSK3, Molecular Cell, vol.50, issue.3, pp.407-426, 2013.
DOI : 10.1016/j.molcel.2013.03.022

H. R. Heathcote, S. J. Mancini, A. Strembitska, K. Jamal, J. A. Reihill et al., Protein kinase C phosphorylates AMP-activated protein kinase alpha1 Ser487, The Biochemical journal, issue.24, pp.473-4681, 2016.
DOI : 10.1042/bcj20160211

URL : http://www.biochemj.org/content/ppbiochemj/473/24/4681.full.pdf

K. A. Coughlan, R. J. Valentine, B. S. Sudit, K. Allen, Y. Dagon et al., PKD1 Inhibits AMPK??2 through Phosphorylation of Serine 491 and Impairs Insulin Signaling in Skeletal Muscle Cells, PKD1 Inhibits AMPKalpha2 through Phosphorylation of Serine 491 and Impairs Insulin Signaling in Skeletal Muscle Cells, pp.5664-75, 2016.
DOI : 10.1073/pnas.1105062108

C. T. Pineda, S. Ramanathan, K. Fon-tacer, J. L. Weon, M. B. Potts et al., Degradation of AMPK by a Cancer-Specific Ubiquitin Ligase, Cell, vol.160, issue.4, pp.715-743, 2015.
DOI : 10.1016/j.cell.2015.01.034

I. K. Vila, Y. Yao, G. Kim, W. Xia, H. Kim et al., A UBE2O-AMPKalpha2 Axis that Promotes Tumor Initiation and Progression Offers Opportunities for Therapy, Cancer Cell, issue.2, pp.31-208, 2017.
DOI : 10.1016/j.ccell.2017.01.003

URL : http://europepmc.org/articles/pmc5463996?pdf=render

N. Kazgan, T. Williams, L. J. Forsberg, and J. E. Brenman, Identification of a Nuclear Export Signal in the Catalytic Subunit of AMP-activated Protein Kinase, Molecular Biology of the Cell, vol.21, issue.19, pp.3433-3475, 2010.
DOI : 10.1091/mbc.E10-04-0347

I. Salt, J. W. Celler, S. A. Hawley, A. Prescott, A. Woods et al., AMP-Activated Protein Kinase, Circulation Research, vol.120, issue.11, pp.334-177, 1998.
DOI : 10.1161/CIRCRESAHA.117.309633

S. M. Warden, C. Richardson, J. O. Donnell, J. , D. Stapleton et al., Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization, Biochem J, issue.2, pp.354-275, 2001.

J. S. Oakhill, Z. P. Chen, J. W. Scott, R. Steel, L. A. Castelli et al., ??-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK), Proceedings of the National Academy of Sciences, vol.87, issue.4, pp.19237-19278, 2010.
DOI : 10.1073/pnas.87.4.1506

J. Liang, Z. X. Xu, Z. Ding, Y. Lu, Q. Yu et al., Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance, Myristoylation confers noncanonical AMPK functions in autophagy selectivity and mitochondrial surveillance, p.7926, 2015.
DOI : 10.1074/mcp.T500003-MCP200

O. 'brien, M. Kundu, B. Viollet, G. R. Steinberg, K. Sakamoto et al., The autophagy initiator ULK1 sensitizes AMPK to allosteric drugs, Nat Commun, vol.8, issue.1, p.571, 2017.

B. F. Hardie, E. A. Hansen, J. F. Richter, and . Wojtaszewski, The alpha2-5'AMP-activated protein kinase is a site 2

J. J. Beullens, M. Guinovart, B. Foretz, K. Viollet, L. Sakamoto et al., AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase, Biochem J, vol.443, issue.1, pp.193-203, 2012.

G. Polekhina, A. Gupta, B. J. Michell, B. Van-denderen, S. Murthy et al., AMPK ?? Subunit Targets Metabolic Stress Sensing to Glycogen, Current Biology, vol.13, issue.10, pp.867-71, 2003.
DOI : 10.1016/S0960-9822(03)00292-6

URL : https://doi.org/10.1016/s0960-9822(03)00292-6

A. Koay, B. Woodcroft, E. J. Petrie, H. Yue, S. Emanuelle et al., AMPK beta subunits display isoform specific affinities for carbohydrates, FEBS Lett, issue.15, pp.584-3499, 2010.
DOI : 10.1016/j.febslet.2010.07.015

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.febslet.2010.07.015/pdf

Y. Oligschlaeger, M. Miglianico, D. Chanda, R. Scholz, R. F. Thali et al., The Recruitment of AMP-activated Protein Kinase to Glycogen Is Regulated by Autophosphorylation, Journal of Biological Chemistry, vol.31, issue.18, pp.11715-11743, 2015.
DOI : 10.1002/prot.10104

H. Xu, N. T. Frankenberg, G. D. Lamb, P. R. Gooley, D. I. Stapleton et al., -subunit of AMP-activated kinase does not associate with glycogen in skeletal muscle, American Journal of Physiology-Cell Physiology, vol.311, issue.1, pp.35-42, 2016.
DOI : 10.1007/s13105-015-0407-y

H. Sakoda, M. Fujishiro, J. Fujio, N. Shojima, T. Ogihara et al., Glycogen debranching enzyme association with ??-subunit regulates AMP-activated protein kinase activity, American Journal of Physiology-Endocrinology and Metabolism, vol.289, issue.3, pp.474-81, 2005.
DOI : 10.1073/pnas.0308061100

URL : http://ajpendo.physiology.org/content/ajpendo/289/3/E474.full.pdf

J. S. Oakhill, R. Steel, Z. P. Chen, J. W. Scott, N. Ling et al., AMPK Is a Direct Adenylate Charge-Regulated Protein Kinase, Science, vol.55, issue.7342, pp.1433-1438, 2011.
DOI : 10.1016/0076-6879(79)55027-7

B. Xiao, R. Heath, P. Saiu, F. C. Leiper, P. Leone et al., Structural basis for AMP binding to mammalian AMP-activated protein kinase, Nature, vol.278, issue.7161, pp.496-500, 2007.
DOI : 10.1016/S0076-6879(97)78020-0

G. J. Gowans, S. A. Hawley, F. A. Ross, and D. G. Hardie, AMP Is a True Physiological Regulator of AMP-Activated Protein Kinase by Both Allosteric Activation and Enhancing Net Phosphorylation, Cell Metabolism, vol.18, issue.4, pp.556-66, 2013.
DOI : 10.1016/j.cmet.2013.08.019

L. F. Eccleston, P. Haire, S. A. Saiu, R. Howell, S. R. Aasland et al., Structure of mammalian AMPK and its regulation by ADP, Nature, vol.472, issue.7342, pp.230-233, 2011.

F. A. Ross, T. E. Jensen, and D. G. Hardie, Differential regulation by AMP and ADP of AMPK complexes containing different ?? subunit isoforms, Biochemical Journal, vol.473, issue.2, pp.189-99, 2016.
DOI : 10.1042/BJ20150910

Y. L. Zhang, H. Guo, C. S. Zhang, S. Y. Lin, Z. Yin et al., AMP as a Low-Energy Charge Signal Autonomously Initiates Assembly of AXIN-AMPK-LKB1 Complex for AMPK Activation, Cell Metabolism, vol.18, issue.4, pp.546-55, 2013.
DOI : 10.1016/j.cmet.2013.09.005

Z. Guo, Z. Yin, J. Ye, J. W. Han, H. Wu et al., The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism, Cell Metab, vol.20, issue.3, pp.526-566, 2014.

J. F. Wojtaszewski, J. B. Birk, C. Frosig, M. Holten, H. Pilegaard et al., 5???AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes, The Journal of Physiology, vol.99, issue.2, pp.563-73, 2005.
DOI : 10.1073/pnas.252625599

J. T. Treebak, J. B. Birk, B. F. Hansen, G. S. Olsen, and J. F. Wojtaszewski, -containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle, American Journal of Physiology-Cell Physiology, vol.254, issue.4, pp.1041-52, 2009.
DOI : 10.1006/bbrc.2001.5126

J. B. Birk and J. F. Wojtaszewski, Predominant ??2/??2/??3 AMPK activation during exercise in human skeletal muscle, The Journal of Physiology, vol.108, issue.3, pp.1021-1053, 2006.
DOI : 10.1172/JCI13505

E. J. Kurth-kraczek, M. F. Hirshman, L. J. Goodyear, and W. W. Winder, 5' AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle, Diabetes, vol.48, issue.8, pp.1667-71, 1999.
DOI : 10.2337/diabetes.48.8.1667

J. F. Goodyear and . Wojtaszewski, Acute exercise and physiological insulin induce distinct phosphorylation signatures on TBC1D1 and TBC1D4 proteins in human skeletal muscle, J Physiol, vol.592, issue.2, pp.351-75, 2014.

J. Wu, D. Puppala, X. Feng, M. Monetti, A. L. Lapworth et al., Chemoproteomic Analysis of Intertissue and Interspecies Isoform Diversity of AMP-activated Protein Kinase (AMPK), Journal of Biological Chemistry, vol.286, issue.50, pp.35904-35916, 2013.
DOI : 10.1113/jphysiol.2006.108506

X. Stephenne, M. Foretz, N. Taleux, G. C. Van-der-zon, E. Sokal et al., Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status, Diabetologia, vol.25, issue.12, pp.3101-3111, 2011.
DOI : 10.2133/dmpk.DMPK-10-NT-010

E. P. Brass and C. L. Hoppel, Mitochondria as targets of drug toxicity: Lessons from the R118 phase I experience, Clinical Pharmacology & Therapeutics, vol.54, issue.5, pp.464-470, 2015.
DOI : 10.1124/pr.54.4.589

C. C. Low-wang, J. L. Galinkin, and W. R. Hiatt, Toxicity of a novel therapeutic agent targeting mitochondrial complex I, Clinical Pharmacology & Therapeutics, vol.224, issue.Pt 3, pp.551-560, 2015.
DOI : 10.1016/j.expneurol.2010.03.028

M. Foretz, S. Hebrard, J. Leclerc, E. Zarrinpashneh, M. Soty et al., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, Journal of Clinical Investigation, vol.120, issue.7, pp.2355-69, 2010.
DOI : 10.1172/JCI40671DS1

URL : https://hal.archives-ouvertes.fr/inserm-00495746

B. Guigas, K. Sakamoto, N. Taleux, S. M. Reyna, N. Musi et al., Beyond AICA riboside: In search of new specific AMP-activated protein kinase activators, IUBMB Life, vol.283, issue.Pt 1, pp.18-26, 2009.
DOI : 10.1152/ajpregu.00319.2002

S. E. Sinnett and J. E. Brenman, Past strategies and future directions for identifying AMP-activated protein kinase (AMPK) modulators, Pharmacology & Therapeutics, vol.143, issue.1, pp.111-119, 2014.
DOI : 10.1016/j.pharmthera.2014.02.008

URL : http://europepmc.org/articles/pmc3991011?pdf=render

J. Kim, J. Shin, and J. Ha, Screening methods for AMP-activated protein kinase modulators: a patent review, Expert Opinion on Therapeutic Patents, vol.21, issue.7, pp.261-77, 2015.
DOI : 10.1016/j.chembiol.2014.05.014

K. Zhao, P. Marsh, P. Kym, H. S. Jung, E. Camp et al., Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome, Cell Metab, vol.3, issue.6, pp.403-419, 2006.

B. Guigas and B. Viollet, Targeting AMPK: From Ancient Drugs to New Small-Molecule Activators, Exs, vol.108, issue.1801???11, pp.327-350, 2016.
DOI : 10.1074/jbc.M404421200

J. Kim, G. Yang, Y. Kim, and J. Ha, AMPK activators: mechanisms of action and physiological activities, Experimental & Molecular Medicine, vol.279, issue.4, p.224, 2016.
DOI : 10.1111/j.1742-4658.2012.08644.x

K. O. Cameron and R. G. , Recent progress in the identification of adenosine monophosphate-activated protein kinase (AMPK) activators, Bioorganic & Medicinal Chemistry Letters, vol.26, issue.21, pp.5139-5148, 2016.
DOI : 10.1016/j.bmcl.2016.09.065

H. Yun and J. Ha, AMP-activated protein kinase modulators: a patent review (2006 ??? 2010), Expert Opinion on Therapeutic Patents, vol.297, issue.6, pp.983-1005, 2006.
DOI : 10.1152/ajpcell.00010.2009

R. W. Hunter, M. Foretz, L. Bultot, M. D. Fullerton, M. Deak et al., Mechanism of Action of Compound-13: An ??1-Selective Small Molecule Activator of AMPK, Chemistry & Biology, vol.21, issue.7, pp.866-79, 2014.
DOI : 10.1016/j.chembiol.2014.05.014

X. Cameron and R. G. Qiu, Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms, Structure, vol.22, issue.8, pp.1161-1172, 2014.

S. Walker, F. Hallen, S. R. Giordanetto, D. Martin, S. J. Carling et al., Structural basis of AMPK regulation by small molecule activators, Nat Commun, vol.4, issue.3017, 2013.

X. Li, L. Wang, X. E. Zhou, J. Ke, P. W. De-waal et al., Structural basis of AMPK regulation by adenine nucleotides and glycogen, Cell Research, vol.377, issue.1, pp.50-66, 2015.
DOI : 10.1016/j.ab.2008.03.035

F. A. Ross, S. A. Hawley, F. R. Auciello, G. J. Gowans, A. Atrih et al., Mechanisms of Paradoxical Activation of AMPK by the Kinase Inhibitors SU6656 and Sorafenib, Cell Chemical Biology, vol.24, issue.7, pp.813-824, 2017.
DOI : 10.1016/j.chembiol.2017.05.021

B. E. Oakhill and . Kemp, Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding, Nat Commun, vol.7, p.10912, 2016.

. Sakamoto, Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase, J Biol Chem, vol.282, issue.45, pp.32549-60, 2007.

M. J. Sanders, Z. S. Ali, B. D. Hegarty, R. Heath, M. A. Snowden et al., Defining the Mechanism of Activation of AMP-activated Protein Kinase by the Small Molecule A-769662, a Member of the Thienopyridone Family, Journal of Biological Chemistry, vol.13, issue.45, pp.32539-32587, 2007.
DOI : 10.1126/science.1137503

A. M. Ogunbayo, D. G. Evans, and . Hardie, Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation, Cell Metab, vol.11, issue.6, pp.554-65, 2010.

P. R. Koay, D. Gooley, B. E. Stapleton, and . Kemp, Thienopyridone drugs are selective activators of AMP-activated protein kinase beta1-containing complexes, Chem Biol, vol.15, issue.11, pp.1220-1250, 2008.

B. Benziane, M. Bjornholm, L. Lantier, B. Viollet, J. R. Zierath et al., -ATPase, American Journal of Physiology-Cell Physiology, vol.118, issue.6, pp.1554-66, 2009.
DOI : 10.1172/JCI13505

D. Moreno, E. Knecht, B. Viollet, and P. Sanz, A769662, a novel activator of AMP-activated protein kinase, inhibits non-proteolytic components of the 26S proteasome by an AMPK-independent mechanism, FEBS Letters, vol.97, issue.17, pp.2650-2654, 2008.
DOI : 10.1016/S0092-8674(00)80753-9

Y. C. Lai, S. Kviklyte, D. Vertommen, L. Lantier, M. Foretz et al., A small-molecule benzimidazole derivative that potently activates AMPK to increase glucose transport in skeletal muscle: comparison with effects of contraction and other AMPK activators, Biochemical Journal, vol.272, issue.3, pp.363-75, 2014.
DOI : 10.1113/jphysiol.2008.167528

B. Viollet, B. Guigas, J. Leclerc, S. Hebrard, L. Lantier et al., AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives, Acta Physiologica, vol.108, issue.Pt 1, pp.81-98, 2009.
DOI : 10.1172/JCI13505

URL : https://hal.archives-ouvertes.fr/inserm-00363222

B. K. Smith, E. M. Marcinko, J. S. Desjardins, R. J. Lally, G. R. Ford et al., Treatment of nonalcoholic fatty liver disease: role of AMPK, American Journal of Physiology-Endocrinology and Metabolism, vol.309, issue.4, pp.730-740, 2016.
DOI : 10.1172/JCI13505

S. A. Hawley, M. D. Fullerton, F. A. Ross, J. D. Schertzer, C. Chevtzoff et al., The Ancient Drug Salicylate Directly Activates AMP-Activated Protein Kinase, Science, vol.101, issue.7, pp.918-940, 2012.
DOI : 10.1038/sj.bjc.6605240

URL : http://europepmc.org/articles/pmc3399766?pdf=render

N. Boudaba, A. Marion, C. Huet, R. Pierre, B. Viollet et al., AMPK Re-Activation Suppresses Hepatic Steatosis but its Downregulation Does Not Promote Fatty Liver Development, EBioMedicine, vol.28, 2018.
DOI : 10.1016/j.ebiom.2018.01.008

URL : https://hal.archives-ouvertes.fr/inserm-01724235

F. A. Duca, C. D. Cote, B. A. Rasmussen, M. Zadeh-tahmasebi, G. A. Rutter et al., Metformin activates a duodenal Ampk???dependent pathway to lower hepatic glucose production in rats, Nature Medicine, vol.361, issue.5, pp.506-517, 2015.
DOI : 10.1016/0014-5793(95)00172-6

R. Mounier, M. Theret, L. Arnold, S. Cuvellier, L. Bultot et al., AMPK??1 Regulates Macrophage Skewing at the Time of Resolution of Inflammation during Skeletal Muscle Regeneration, Cell Metabolism, vol.18, issue.2, pp.251-64, 2013.
DOI : 10.1016/j.cmet.2013.06.017

I. P. Palmer and . Salt, Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation, Mol Cell Endocrinol, vol.440, pp.44-56, 2017.

G. S. Costa-pereira, I. P. Baillie, T. M. Salt, and . Palmer, Phosphorylation of Janus kinase 1 (JAK1) by AMPactivated protein kinase (AMPK) links energy sensing to anti-inflammatory signaling, Sci Signal, vol.9, issue.453, 2016.

S. Galic, M. D. Fullerton, J. D. Schertzer, S. Sikkema, K. Marcinko et al., Hematopoietic AMPK ??1 reduces mouse adipose tissue macrophage inflammation and insulin resistance in obesity, Journal of Clinical Investigation, vol.121, issue.12, pp.4903-4918, 2011.
DOI : 10.1172/JCI58577DS1

M. Guma, Y. Wang, B. Viollet, and R. Liu-bryan, AMPK Activation by A-769662 Controls IL-6 Expression in Inflammatory Arthritis, PLOS ONE, vol.6, issue.Suppl 2, p.140452, 2015.
DOI : 10.1371/journal.pone.0140452.s002

URL : https://hal.archives-ouvertes.fr/inserm-01217825

A. S. Kim, E. J. Miller, T. M. Wright, J. Li, D. Qi et al., A small molecule AMPK activator protects the heart against ischemia???reperfusion injury, Journal of Molecular and Cellular Cardiology, vol.51, issue.1, pp.24-32, 2011.
DOI : 10.1016/j.yjmcc.2011.03.003

F. Balligand, J. L. Bontemps, S. Vanoverschelde, C. Horman, L. Beauloye et al., A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake, Am J Physiol Heart Circ Physiol, vol.306, issue.12, pp.1619-1649, 2014.

G. Zadra, C. Photopoulos, S. Tyekucheva, P. Heidari, Q. P. Weng et al., A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis, EMBO Molecular Medicine, vol.6, issue.4, pp.519-557, 2014.
DOI : 10.1002/emmm.201302734

A. R. Rajamohan, C. R. Reyes, T. Rose, A. Ryder, A. C. Shavnya et al., Discovery and Preclinical Characterization of 6-Chloro-5-[4-(1-hydroxycyclobutyl)phenyl]-1H-indole-3-carboxylic Acid (PF-06409577), a Direct Activator of Adenosine Monophosphate-activated Protein Kinase (AMPK), for the Potential Treatment of Diabetic Nephropathy, J Med Chem, vol.59, issue.17, pp.8068-81, 2016.

G. G. Opsahl, M. J. Boucher, P. Birnbaum, T. Dasilva-jardine, and . Rolph, Selective Activation of AMPK beta1- Containing Isoforms Improves Kidney Function in a Rat Model of Diabetic Nephropathy, J Pharmacol Exp Ther, vol.361, issue.2, pp.303-311, 2017.

A. C. Coskran, D. Opsahl, M. Flynn, W. Blatnik, E. Li et al., Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice, Cell Metab, vol.25, issue.5

R. Willows, N. Navaratnam, A. Lima, J. Read, and D. Carling, Effect of different gamma-subunit isoforms on the regulation of AMPK, Biochem J, issue.10, pp.474-1741, 2017.

J. E. Gomez-galeno, Q. Dang, T. H. Nguyen, S. H. Boyer, M. P. Grote et al., A Potent and Selective AMPK Activator That Inhibits de Novo Lipogenesis, ACS Medicinal Chemistry Letters, vol.1, issue.9, pp.478-82, 2010.
DOI : 10.1021/ml100143q

T. Pang, Z. S. Zhang, M. Gu, B. Y. Qiu, L. F. Yu et al., Small Molecule Antagonizes Autoinhibition and Activates AMP-activated Protein Kinase in Cells, Journal of Biological Chemistry, vol.77, issue.23, pp.16051-60, 2008.
DOI : 10.1074/jbc.M706543200

J. Y. Jiang, F. J. Li, J. Nan, and . Li, Novel small-molecule AMPK activator orally exerts beneficial effects on diabetic db/db mice, Toxicol Appl Pharmacol, vol.273, issue.2, pp.325-359, 2013.

T. E. Jensen, F. A. Ross, M. Kleinert, L. Sylow, J. R. Knudsen et al., PT-1 selectively activates AMPK-??1 complexes in mouse skeletal muscle, but activates all three ?? subunit complexes in cultured human cells by inhibiting the respiratory chain, Biochemical Journal, vol.336, issue.3, pp.461-72, 2015.
DOI : 10.1152/ajpendo.00369.2006

J. W. Scott, J. S. Oakhill, N. X. Ling, C. G. Langendorf, R. C. Foitzik et al., ATP sensitive bi-quinoline activator of the AMP-activated protein kinase, Biochemical and Biophysical Research Communications, vol.443, issue.2, pp.435-475, 2014.
DOI : 10.1016/j.bbrc.2013.11.130

J. W. Scott, S. Galic, K. L. Graham, R. Foitzik, N. X. Ling et al., Inhibition of AMP-Activated Protein Kinase at the Allosteric Drug-Binding Site Promotes Islet Insulin Release, Chemistry & Biology, vol.22, issue.6, pp.705-716, 2015.
DOI : 10.1016/j.chembiol.2015.05.011

E. B. Carling, J. R. Sternick, M. A. Arch, H. Cawthorne, H. Watkins et al., Chronic Activation of gamma2 AMPK Induces Obesity and Reduces beta Cell Function, Cell Metab, vol.23, issue.5, pp.821-857, 2016.

M. Domise and V. Vingtdeux, AMPK in Neurodegenerative Diseases, Exs, vol.90, issue.3, pp.153-177, 2016.
DOI : 10.1152/physrev.00041.2009

F. A. Ross, C. Mackintosh, and D. G. Hardie, AMP-activated protein kinase: a cellular energy sensor that comes in 12 flavours, The FEBS Journal, vol.59, issue.16, pp.2987-3001, 2016.
DOI : 10.1093/sysbio/syq010

R. Willows, M. J. Sanders, B. Xiao, B. R. Patel, S. R. Martin et al., Phosphorylation of AMPK by upstream kinases is required for activity in mammalian cells, The Biochemical journal, pp.474-3059, 2017.

J. W. Scott, N. Ling, S. M. Issa, T. A. Dite, M. T. O-'brien et al., Small Molecule Drug A-769662 and AMP Synergistically Activate Naive AMPK Independent of Upstream Kinase Signaling, Chemistry & Biology, vol.21, issue.5, pp.619-646, 2014.
DOI : 10.1016/j.chembiol.2014.03.006

D. B. Shackelford and R. J. Shaw, The LKB1???AMPK pathway: metabolism and growth control in tumour suppression, Nature Reviews Cancer, vol.28, issue.8, pp.563-75, 2009.
DOI : 10.4161/auto.4240

E. Blair, C. Redwood, H. Ashrafian, M. Oliveira, J. Broxholme et al., Mutations in the gamma2 subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis, Human Molecular Genetics, vol.10, issue.11, pp.1215-1235, 2001.
DOI : 10.1093/hmg/10.11.1215

M. H. Gollob, M. S. Green, A. S. Tang, T. Gollob, A. Karibe et al., Identification of a gene responsible for familial Wolff-Parkinson- White syndrome, N Engl J Med, vol.344127, issue.24, pp.1823-1854, 2001.

J. Kim, G. Yang, and J. Ha, Targeting of AMP-activated protein kinase: prospects for computer-aided drug design, Expert Opinion on Drug Discovery, vol.270, issue.2, pp.47-59, 2017.
DOI : 10.1172/JCI13505

M. Miglianico, G. A. Nicolaes, and D. Neumann, Pharmacological Targeting of AMP-Activated Protein Kinase and Opportunities for Computer-Aided Drug Design, Journal of Medicinal Chemistry, vol.59, issue.7, pp.2879-93, 2016.
DOI : 10.1021/acs.jmedchem.5b01201

T. Huang, J. Sun, S. Zhou, J. Gao, and Y. Liu, Identification of Direct Activator of Adenosine Monophosphate-Activated Protein Kinase (AMPK) by Structure-Based Virtual Screening and Molecular Docking Approach, International Journal of Molecular Sciences, vol.59, issue.12, 2017.
DOI : 10.1177/1087057106296047

J. Ward, A. R. Reyes, and R. G. , Allosteric Modulation of AMPK Enzymatic Activity, Methods Enzymol, vol.587, pp.481-509, 2017.
DOI : 10.1016/bs.mie.2016.10.010

M. Bosselaar, P. Smits, L. J. Van-loon, and C. J. Tack, Intravenous AICAR During Hyperinsulinemia Induces Systemic Hemodynamic Changes but Has No Local Metabolic Effect, The Journal of Clinical Pharmacology, vol.26, issue.10, pp.1449-58, 2011.
DOI : 10.1046/j.1365-2362.1996.2020551.x

G. R. Muti and . Steinberg, Salicylate activates AMPK and synergizes with metformin to reduce the survival of prostate and lung cancer cells ex vivo through inhibition of de novo lipogenesis, The Biochemical journal, vol.469, issue.2, pp.177-87, 2015.

S. Ducommun, R. J. Ford, L. Bultot, M. Deak, L. Bertrand et al., Enhanced activation of cellular AMPK by dual-small molecule treatment: AICAR and A769662, American Journal of Physiology-Endocrinology and Metabolism, vol.306, issue.6, pp.688-96, 2014.
DOI : 10.1152/ajpcell.00319.2003

R. M. Crane, K. Blumer, B. E. Marcinko, H. C. Kemp, G. R. Gerstein et al., Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity, The Biochemical journal, vol.468, issue.1, pp.125-157, 2015.

M. Ghaffari, H. Bellahcene, M. H. Ashrafian, E. A. Rider, K. Richter et al., Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle, Am J Physiol Endocrinol Metab, vol.311, issue.4, pp.706-719, 2016.

S. Fraser, P. Mount, R. Hill, V. Levidiotis, F. Katsis et al., Regulation of the energy sensor AMP-activated protein kinase in the kidney by dietary salt intake and osmolality, American Journal of Physiology-Renal Physiology, vol.288, issue.3, pp.578-86, 2005.
DOI : 10.1096/fj.02-0982fje

S. Cerezo, S. Marchetti, N. Rocchi, T. Droin, G. Cluzeau et al., The PRKAA1/AMPKalpha1 pathway triggers autophagy during CSF1-induced human monocyte differentiation and is a potential target in CMML, Autophagy, vol.11, issue.7, pp.1114-1143, 2015.

J. Kanellis, R. K. Kandane, D. Etemadmoghadam, S. A. Fraser, P. F. Mount et al., Activators of the energy sensing kinase AMPK inhibit random cell movement and chemotaxis in U937 cells, Immunology and Cell Biology, vol.62, issue.(Suppl.), pp.6-12, 2006.
DOI : 10.1161/hq0701.092143

D. Sag, D. Carling, R. D. Stout, and J. Suttles, Adenosine 5'-Monophosphate-Activated Protein Kinase Promotes Macrophage Polarization to an Anti-Inflammatory Functional Phenotype, The Journal of Immunology, vol.181, issue.12, pp.8633-8674, 2008.
DOI : 10.4049/jimmunol.181.12.8633

URL : http://www.jimmunol.org/content/jimmunol/181/12/8633.full.pdf