R. Bergeron, S. F. Previs, G. W. Cline, P. Perret, R. R. Russell-3rd et al., Effect of 5-Aminoimidazole-4-Carboxamide-1-??-D-Ribofuranoside Infusion on In Vivo Glucose and Lipid Metabolism in Lean and Obese Zucker Rats, Diabetes, vol.50, issue.5, pp.1076-1082, 2001.
DOI : 10.2337/diabetes.50.5.1076

A. C. Beynen, K. F. Buechler, A. J. Van-der-molen, and M. J. Geelen, Inhibition of hepatic lipogenesis by salicylate, Toxicology, vol.24, issue.1, pp.33-43, 1982.
DOI : 10.1016/0300-483X(82)90060-9

T. Chalvon-demersay, P. C. Even, C. Chaumontet, J. Piedcoq, B. Viollet et al., Modifying the Dietary Carbohydrate-to-Protein Ratio Alters the Postprandial Macronutrient Oxidation Pattern in Liver of AMPK-Deficient Mice, The Journal of Nutrition, vol.147, pp.1669-1676, 2017.
DOI : 10.3945/jn.117.250803

J. C. Cohen, J. D. Horton, and H. H. Hobbs, Human Fatty Liver Disease: Old Questions and New Insights, Science, vol.48, issue.3, pp.1519-1523, 2011.
DOI : 10.1002/hep.22429

URL : http://europepmc.org/articles/pmc3229276?pdf=render

E. C. Cokorinos, J. Delmore, A. R. Reyes, B. Albuquerque, R. Kjøbsted et al., Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice, Cell Metabolism, vol.25, issue.5, pp.1147-1159, 2017.
DOI : 10.1016/j.cmet.2017.04.010

B. Cool, B. Zinker, W. Chiou, L. Kifle, N. Cao et al., Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome, Cell Metabolism, vol.3, issue.6, pp.403-416, 2006.
DOI : 10.1016/j.cmet.2006.05.005

K. L. Donnelly, C. I. Smith, S. J. Schwarzenberg, J. Jessurun, M. D. Boldt et al., Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease, Journal of Clinical Investigation, vol.115, issue.5, pp.1343-1351, 2005.
DOI : 10.1172/JCI23621

J. A. Duarte, F. Carvalho, M. Pearson, J. D. Horton, J. D. Browning et al., A high-fat diet suppresses de novo lipogenesis and desaturation but not elongation and triglyceride synthesis in mice, Journal of Lipid Research, vol.4, issue.Suppl., pp.2541-2553, 2014.
DOI : 10.1194/jlr.M005363

M. Y. El-mir, V. Nogueira, E. Fontaine, N. Averet, M. Rigoulet et al., Dimethylbiguanide Inhibits Cell Respiration via an Indirect Effect Targeted on the Respiratory Chain Complex I, Journal of Biological Chemistry, vol.1364, issue.2, pp.223-228, 2000.
DOI : 10.1002/(SICI)1099-1263(199711/12)17:6<409::AID-JAT462>3.0.CO;2-B

URL : https://hal.archives-ouvertes.fr/inserm-00390049

M. Foretz, S. Hébrard, S. Guihard, J. Leclerc, M. Do-cruzeiro et al., The AMPK??1 subunit plays an essential role in erythrocyte membrane elasticity, and its genetic inactivation induces splenomegaly and anemia, The FASEB Journal, vol.29, issue.1, pp.337-347, 2011.
DOI : 10.1074/jbc.M804469200

M. D. Fullerton, S. Galic, K. Marcinko, S. Sikkema, T. Pulinilkunnil et al., Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin, Nature Medicine, vol.261, issue.12, pp.1649-1654, 2013.
DOI : 10.1111/j.1749-6632.1959.tb44923.x

J. E. Gomez-galeno, Q. Dang, T. H. Nguyen, S. H. Boyer, M. P. Grote et al., A Potent and Selective AMPK Activator That Inhibits de Novo Lipogenesis, ACS Medicinal Chemistry Letters, vol.1, issue.9, pp.478-482, 2010.
DOI : 10.1021/ml100143q

B. Guigas, L. Bertrand, N. Taleux, M. Foretz, N. Wiernsperger et al., 5-Aminoimidazole-4-Carboxamide-1-??-D-Ribofuranoside and Metformin Inhibit Hepatic Glucose Phosphorylation by an AMP-Activated Protein Kinase-Independent Effect on Glucokinase Translocation, Diabetes, vol.55, issue.4, pp.865-874, 2006.
DOI : 10.2337/diabetes.55.04.06.db05-1178

URL : http://diabetes.diabetesjournals.org/content/diabetes/55/4/865.full.pdf

B. Guigas, N. Taleux, M. Foretz, D. Detaille, F. Andreelli et al., AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside, Biochemical Journal, vol.404, issue.3, pp.499-507, 2007.
DOI : 10.1042/BJ20070105

URL : https://hal.archives-ouvertes.fr/hal-00478741

S. A. Hawley, M. D. Fullerton, F. A. Ross, J. D. Schertzer, C. Chevtzoff et al., The Ancient Drug Salicylate Directly Activates AMP-Activated Protein Kinase, Science, vol.101, issue.7, pp.918-922, 2012.
DOI : 10.1038/sj.bjc.6605240

URL : http://europepmc.org/articles/pmc3399766?pdf=render

C. C. Hughey, F. D. James, D. P. Bracy, E. P. Donahue, J. D. Young et al., Loss of hepatic AMP-activated protein kinase impedes the rate of glycogenolysis but not gluconeogenic fluxes in exercising mice, Journal of Biological Chemistry, vol.249, issue.49, 2017.
DOI : 10.1006/meth.2001.1262

R. W. Hunter, M. Foretz, L. Bultot, M. D. Fullerton, M. Deak et al., Mechanism of Action of Compound-13: An ??1-Selective Small Molecule Activator of AMPK, Chemistry & Biology, vol.21, issue.7, pp.866-879, 2014.
DOI : 10.1016/j.chembiol.2014.05.014

E. J. Jung, S. W. Kwon, B. H. Jung, S. H. Oh, and B. H. Lee, Role of the AMPK/SREBP-1 pathway in the development of orotic acid-induced fatty liver, Journal of Lipid Research, vol.1791, issue.9, pp.1617-1625, 2011.
DOI : 10.1016/j.bbalip.2009.08.008

T. Kawaguchi, K. Osatomi, H. Yamashita, T. Kabashima, and K. Uyeda, Mechanism for Fatty Acid ???Sparing??? Effect on Glucose-induced Transcription, Journal of Biological Chemistry, vol.268, issue.6, 2002.
DOI : 10.1046/j.1432-1327.2001.02211.x

P. G. Killenberg, E. D. Davidson, W. Jr, and L. T. , Evidence for a medium-chain fatty acid: coenzyme A ligase (adenosine monophosphate) that activates salicylate, Mol. Pharmacol, vol.7, pp.260-268, 1971.

W. S. Kim, Y. S. Lee, S. H. Cha, H. W. Jeong, S. S. Choe et al., Berberine improves lipid dysregulation in obesity by controlling central and peripheral AMPK activity, American Journal of Physiology-Endocrinology and Metabolism, vol.296, issue.4, pp.812-819, 2009.
DOI : 10.1073/pnas.252625599

E. W. Kraegen, A. K. Saha, E. Preston, D. Wilks, A. J. Hoy et al., Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats, American Journal of Physiology-Endocrinology and Metabolism, vol.290, issue.3, pp.471-479, 2006.
DOI : 10.1074/jbc.M408149200

H. Li, C. He, M. Xu, M. H. Zou, and Z. Xie, Activation of AMPK prevents leucine induced hepatic insulin resistance by suppressing mTOR-STAT3-SOCS3 signaling and reducing IRS-1 serine phosphorylation, Diabetes, vol.59, pp.1540-1408, 2010.

Y. Li, S. Xu, M. M. Mihaylova, B. Zheng, X. Hou et al., AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice, Cell Metabolism, vol.13, issue.4, pp.376-388, 2011.
DOI : 10.1016/j.cmet.2011.03.009

H. Z. Lin, S. Q. Yang, C. Chuckaree, F. Kuhajda, G. Ronnet et al., Metformin reverses fatty liver disease in obese, leptin-deficient mice, Nature Medicine, vol.77, issue.9, pp.998-1003, 2000.
DOI : 10.1002/(SICI)1097-0142(19960201)77:3<474::AID-CNCR8>3.0.CO;2-K

J. Mankouri, P. R. Tedbury, S. Gretton, M. E. Hughes, S. D. Griffin et al., Enhanced hepatitis C virus genome replication and lipid accumulation mediated by inhibition of AMP-activated protein kinase, Proceedings of the National Academy of Sciences, vol.83, issue.20, pp.11549-11554, 2010.
DOI : 10.1128/JVI.02406-08

A. Mazza, B. Fruci, G. A. Garinis, S. Giuliano, R. Malaguarnera et al., The Role of Metformin in the Management of NAFLD, Experimental Diabetes Research, vol.50, issue.5, p.716404, 2012.
DOI : 10.1111/j.1478-3231.2006.01315.x

D. Moreno, E. Knecht, B. Viollet, and P. Sanz, A769662, a novel activator of AMP-activated protein kinase, inhibits non-proteolytic components of the 26S proteasome by an AMPK-independent mechanism, FEBS Letters, vol.97, issue.17, pp.2650-2654, 2008.
DOI : 10.1016/S0092-8674(00)80753-9

E. D. Muse, S. Obici, S. Bhanot, B. P. Monia, R. A. Mckay et al., Role of resistin in diet-induced hepatic insulin resistance, Journal of Clinical Investigation, vol.114, issue.2, pp.232-239, 2004.
DOI : 10.1172/JCI200421270

M. R. Owen, E. Doran, and A. P. Halestrap, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain, Biochemical Journal, vol.348, issue.3, pp.607-614, 2000.
DOI : 10.1042/bj3480607

N. B. Ruderman, D. Carling, M. Prentki, and J. M. Cacicedo, AMPK, insulin resistance, and the metabolic syndrome, Journal of Clinical Investigation, vol.123, issue.7, pp.2764-2772, 2013.
DOI : 10.1172/JCI67227

URL : http://www.jci.org/articles/view/67227/files/pdf

J. W. Scott, B. J. Van-denderen, S. B. Jorgensen, J. E. Honeyman, G. R. Steinberg et al., Thienopyridone Drugs Are Selective Activators of AMP-Activated Protein Kinase ??1-Containing Complexes, Chemistry & Biology, vol.15, issue.11, pp.1220-1230, 2008.
DOI : 10.1016/j.chembiol.2008.10.005

J. W. Scott, N. Ling, S. M. Issa, T. A. Dite, M. T. O-'brien et al., Small Molecule Drug A-769662 and AMP Synergistically Activate Naive AMPK Independent of Upstream Kinase Signaling, Chemistry & Biology, vol.21, issue.5, pp.619-627, 2014.
DOI : 10.1016/j.chembiol.2014.03.006

R. J. Shaw, K. A. Lamia, D. Vasquez, S. H. Koo, N. Bardeesy et al., The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin, Science, vol.310, issue.5754, pp.1642-1646, 2005.
DOI : 10.1126/science.1120781

I. Shimomura, R. E. Hammer, J. A. Richardson, S. Ikemoto, Y. Bashmakov et al., Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy, Genes & Development, vol.12, issue.20, pp.3182-3194, 1998.
DOI : 10.1101/gad.12.20.3182

Y. Shu, S. A. Sheardown, C. Brown, R. P. Owen, S. Zhang et al., Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action, Journal of Clinical Investigation, vol.117, issue.5, pp.1422-1431, 2007.
DOI : 10.1172/JCI30558DS1

B. K. Smith, R. J. Ford, E. M. Desjardins, A. E. Green, M. C. Hughes et al., Salsalate (Salicylate) Uncouples Mitochondria, Improves Glucose Homeostasis, and Reduces Liver Lipids Independent of AMPK-??1, Diabetes, vol.65, issue.11, pp.3352-3361, 2016.
DOI : 10.2337/db16-0564

B. K. Smith, K. Marcinko, E. M. Desjardins, J. S. Lally, R. J. Ford et al., Treatment of nonalcoholic fatty liver disease: role of AMPK, American Journal of Physiology-Endocrinology and Metabolism, vol.309, issue.4, pp.730-740, 2016.
DOI : 10.1172/JCI13505

R. U. Svensson, S. J. Parker, L. J. Eichner, M. J. Kolar, M. Wallace et al., Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models, Nature Medicine, vol.266, issue.10, pp.1108-1119, 2016.
DOI : 10.1006/abio.1998.2632

E. Q. Toyama, S. Herzig, J. Courchet, L. Jr, T. L. Loson et al., AMP-activated protein kinase mediates mitochondrial fission in response to energy stress, Science, vol.8, issue.2, pp.275-281, 2016.
DOI : 10.1038/nprot.2013.143

N. Turner, J. Y. Li, A. Gosby, S. W. To, Z. Cheng et al., Berberine and Its More Biologically Available Derivative, Dihydroberberine, Inhibit Mitochondrial Respiratory Complex I: A Mechanism for the Action of Berberine to Activate AMP-Activated Protein Kinase and Improve Insulin Action, Diabetes, vol.57, issue.5, pp.1414-1418, 2008.
DOI : 10.2337/db07-1552

B. Viollet, F. Andreelli, S. B. Jørgensen, C. Perrin, A. Geloen et al., The AMP-activated protein kinase ??2 catalytic subunit controls whole-body insulin sensitivity, Journal of Clinical Investigation, vol.111, issue.1, pp.91-98, 2003.
DOI : 10.1172/JCI16567

URL : http://europepmc.org/articles/pmc151837?pdf=render

B. Viollet, B. Guigas, J. Leclerc, S. Hebrard, L. Lantier et al., AMP-activated protein kinase in the regulation of hepatic energy metabolism: from physiology to therapeutic perspectives, Acta Physiologica, vol.108, issue.Pt 1, pp.81-98, 2009.
DOI : 10.1172/JCI13505

URL : https://hal.archives-ouvertes.fr/inserm-00363222

C. Wilcock and C. J. Bailey, Accumulation of metformin by tissues of the normal and diabetic mouse, Xenobiotica, vol.37, issue.1, pp.49-57, 1994.
DOI : 10.1016/S0168-8227(88)80022-6

A. Woods, J. R. Williams, P. J. Muckett, F. V. Mayer, M. Liljevald et al., Liver-specific activation of AMPK prevents steatosis on a high-fructose diet. Cell Rep, pp.3043-3051

Y. Wu, P. Song, J. Xu, M. Zhang, and M. H. Zou, Activation of Protein Phosphatase 2A by Palmitate Inhibits AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.31, issue.13, pp.9777-9788, 2007.
DOI : 10.1242/jcs.02724

B. Xiao, M. J. Sanders, D. Carmena, N. J. Bright, L. F. Haire et al., Structural basis of AMPK regulation by small molecule activators, Nature Communications, vol.269, issue.3017, 2013.
DOI : 10.1107/S0907444994003112

M. You, M. Matsumoto, C. M. Pacold, W. K. Cho, and D. W. Crabb, The role of AMP-activated protein kinase in the action of ethanol in the liver, Gastroenterology, vol.127, issue.6, pp.1798-1808, 2004.
DOI : 10.1053/j.gastro.2004.09.049

X. Yu, S. Mccorkle, M. Wang, Y. Lee, J. Li et al., Leptinomimetic effects of the AMP kinase activator AICAR in leptin-resistant rats: prevention of diabetes and ectopic lipid deposition, Diabetologia, vol.3, issue.11, pp.2012-2021, 2004.
DOI : 10.1007/s00125-004-1570-9

H. Yuan, J. Y. Shyy, and M. Martins-green, Second-hand smoke stimulates lipid accumulation in the liver by modulating AMPK and SREBP-1, Journal of Hepatology, vol.51, issue.3, pp.535-547, 2009.
DOI : 10.1016/j.jhep.2009.03.026

G. Zadra, C. Photopoulos, S. Tyekucheva, P. Heidari, Q. P. Weng et al., A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis, EMBO Molecular Medicine, vol.6, issue.4, pp.519-538, 2014.
DOI : 10.1002/emmm.201302734

G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen et al., Role of AMP-activated protein kinase in mechanism of metformin action, Journal of Clinical Investigation, vol.108, issue.8, pp.1167-1174, 2001.
DOI : 10.1172/JCI13505