A. Schultze and J. , Tissue-resident macrophages ? how to humanize our knowledge, Immunol Cell Biol, vol.95, pp.173-177, 2017.

S. Epelman, K. Lavine, and G. Randolph, Origin and Functions of Tissue Macrophages, Immunity, vol.41, issue.1, pp.21-35, 2014.
DOI : 10.1016/j.immuni.2014.06.013

E. Perdiguero and F. Geissmann, The development and maintenance of resident macrophages, Nature Immunology, vol.14, issue.1, pp.2-8, 2016.
DOI : 10.1038/ni.2622

Y. Okabe and R. Medzhitov, Tissue biology perspective on macrophages, Nature Immunology, vol.195, issue.1, pp.9-17, 2016.
DOI : 10.1084/jem.20001858

D. Mosser and J. Edwards, Exploring the full spectrum of macrophage activation, Nature Reviews Immunology, vol.117, issue.12, pp.958-969, 2008.
DOI : 10.4049/jimmunol.171.7.3550

J. Xue, S. Schmidt, J. Sander, A. Draffehn, W. Krebs et al., Transcriptome-Based Network Analysis Reveals a Spectrum Model of Human Macrophage Activation, Immunity, vol.40, issue.2, pp.274-288, 2014.
DOI : 10.1016/j.immuni.2014.01.006

A. Sica and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas, Journal of Clinical Investigation, vol.122, issue.3, pp.787-795, 2012.
DOI : 10.1172/JCI59643DS1

S. Biswas and A. Mantovani, Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm, Nature Immunology, vol.313, issue.10, pp.889-896, 2010.
DOI : 10.1016/j.ccr.2009.06.017

A. Chawla, K. Nguyen, and Y. Goh, Macrophage-mediated inflammation in metabolic disease, Nature Reviews Immunology, vol.17, issue.11, pp.738-749, 2011.
DOI : 10.1038/nm.2353

A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes, Trends in Immunology, vol.23, issue.11, pp.549-555, 2002.
DOI : 10.1016/S1471-4906(02)02302-5

F. Martinez, A. Sica, A. Mantovani, and M. Locati, Macrophage activation and polarization, Frontiers in Bioscience, vol.13, issue.13, pp.453-461, 2008.
DOI : 10.2741/2692

A. Mantovani, F. Marchesi, A. Malesci, L. Laghi, and P. Allavena, Tumour-associated macrophages as treatment targets in oncology, Nature Reviews Clinical Oncology, vol.17, issue.7, pp.399-416, 2017.
DOI : 10.1038/ni.3354

A. Gentles, A. Newman, C. Liu, S. Bratman, W. Feng et al., The prognostic landscape of genes and infiltrating immune cells across human cancers, Nature Medicine, vol.30, issue.8, pp.938-945, 2015.
DOI : 10.18637/jss.v030.i10

R. Noy and J. Pollard, Tumor-Associated Macrophages: From Mechanisms to Therapy, Immunity, vol.41, issue.1, pp.49-61, 2014.
DOI : 10.1016/j.immuni.2014.06.010

URL : https://doi.org/10.1016/j.immuni.2014.09.021

R. Ostuni, F. Kratochvill, P. Murray, and G. Natoli, Macrophages and cancer: from mechanisms to therapeutic implications, Trends in Immunology, vol.36, issue.4, pp.229-239, 2015.
DOI : 10.1016/j.it.2015.02.004

C. Williams, E. Yeh, and A. Soloff, Tumorassociated macrophages: unwitting accomplices in breast cancer malignancy, NPJ Breast Cancer, vol.2, 2016.

P. Murray, Macrophage Polarization, Annual Review of Physiology, vol.79, issue.1, pp.541-566, 2017.
DOI : 10.1146/annurev-physiol-022516-034339

S. Chevrier, J. Levine, V. Zanotelli, K. Silina, D. Schulz et al., An Immune Atlas of Clear Cell Renal Cell Carcinoma, Cell, vol.169, issue.4, pp.736-749, 2017.
DOI : 10.1016/j.cell.2017.04.016

O. Colegio, N. Chu, A. Szabo, T. Chu, A. Rhebergen et al., Functional polarization of tumour-associated macrophages by tumour-derived lactic acid, Nature, vol.88, issue.7519, pp.559-563, 2014.
DOI : 10.1016/S0092-8674(00)81848-6

J. Hamilton, Colony-stimulating factors in inflammation and autoimmunity, Nature Reviews Immunology, vol.39, issue.7, pp.533-544, 2008.
DOI : 10.1161/01.ATV.19.1.98

J. Hamilton, A. Cook, and P. Tak, Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases, Nature Reviews Drug Discovery, vol.15, issue.1, pp.53-70, 2016.
DOI : 10.1006/cyto.2001.0937

X. Dai, G. Ryan, A. Hapel, M. Dominguez, R. Russell et al., Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects, Blood, vol.99, issue.1, pp.111-120, 2002.
DOI : 10.1182/blood.V99.1.111

K. Macdonald, V. Rowe, H. Bofinger, R. Thomas, T. Sasmono et al., The Colony-Stimulating Factor 1 Receptor Is Expressed on Dendritic Cells during Differentiation and Regulates Their Expansion, The Journal of Immunology, vol.175, issue.3, pp.1399-1405, 2005.
DOI : 10.4049/jimmunol.175.3.1399

B. Erblich, L. Zhu, A. Etgen, K. Dobrenis, and J. Pollard, Absence of colony stimulation factor-1 receptor results in loss of microglia, disrupted brain development and olfactory deficits, PLoS One, vol.6, 2011.

H. Lin, E. Lee, K. Hestir, C. Leo, M. Huang et al., Discovery of a Cytokine and Its Receptor by Functional Screening of the Extracellular Proteome, Science, vol.2, issue.1, pp.807-811, 2008.
DOI : 10.1182/blood.V99.1.111

V. Chitu and E. Stanley, Regulation of Embryonic and Postnatal Development by the CSF-1 Receptor, Curr Top Dev Biol, vol.123, pp.229-275, 2017.
DOI : 10.1016/bs.ctdb.2016.10.004

K. Sauter, C. Pridans, A. Sehgal, Y. Tsai, B. Bradford et al., Pleiotropic effects of extended blockade of CSF1R signaling in adult mice, Journal of Leukocyte Biology, vol.96, issue.2, pp.265-274, 2014.
DOI : 10.1189/jlb.2A0114-006R

D. Lacey, A. Achuthan, A. Fleetwood, H. Dinh, J. Roiniotis et al., Defining GM-CSF- and Macrophage-CSF-Dependent Macrophage Responses by In Vitro Models, The Journal of Immunology, vol.188, issue.11, pp.5752-5765, 2012.
DOI : 10.4049/jimmunol.1103426

L. Ho, Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences, Blood, vol.121, pp.57-69, 2013.

E. Izquierdo, V. Cuevas, S. Fernandez-arroyo, M. Riera-borrull, E. Orta-zavalza et al., Reshaping of Human Macrophage Polarization through Modulation of Glucose Catabolic Pathways, The Journal of Immunology, vol.195, issue.5, pp.2442-2451, 2015.
DOI : 10.4049/jimmunol.1403045

D. Duluc, Y. Delneste, F. Tan, M. Moles, L. Grimaud et al., Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-associated macrophage-like cells, Blood, vol.110, issue.13, pp.4319-4330, 2007.
DOI : 10.1182/blood-2007-02-072587

URL : http://www.bloodjournal.org/content/bloodjournal/110/13/4319.full.pdf

E. Foucher, S. Blanchard, L. Preisser, P. Descamps, N. Ifrah et al., IL-34- and M-CSF-induced macrophages switch memory T cells into Th17 cells via membrane IL-1??, European Journal of Immunology, vol.38, issue.4, pp.1092-1102, 2015.
DOI : 10.1002/eji.200838535

URL : https://hal.archives-ouvertes.fr/hal-01392241

F. Bellora, R. Castriconi, A. Doni, C. Cantoni, L. Moretta et al., M-CSF induces the expression of a membrane-bound form of IL-18 in a subset of human monocytes differentiating in vitro toward macrophages, European Journal of Immunology, vol.107, issue.6, pp.1618-1626, 2012.
DOI : 10.1182/blood-2005-07-2696

L. Preisser, C. Miot, L. Guillou-guillemette, H. Beaumont, E. Foucher et al., IL-34 and macrophage colony-stimulating factor are overexpressed in hepatitis C virus fibrosis and induce profibrotic macrophages that promote collagen synthesis by hepatic stellate cells, Hepatology, vol.176, issue.1, pp.1879-1890, 2014.
DOI : 10.1164/rccm.200609-1279OC

J. Vignaud, M. B. Klein, N. Plenat, F. Pech, M. Borrelly et al., The role of platelet-derived growth factor production by tumor-associated macrophages in tumor stroma formation in lung cancer, Cancer Res, vol.54, pp.5455-5463, 1994.

M. Pickup, S. Novitskiy, and H. Moses, The roles of TGF?? in the tumour microenvironment, Nature Reviews Cancer, vol.191, issue.11, pp.788-799, 2013.
DOI : 10.1084/jem.191.7.1187

A. Cardoso, L. Andrade, S. Bustos, and R. Chammas, Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments, Frontiers in Oncology, vol.173, issue.Suppl 1, 2016.
DOI : 10.2353/ajpath.2008.080380

B. Wang, W. Xu, M. Tan, Y. Xiao, H. Yang et al., Integrative genomic analyses of a novel cytokine, interleukin-34 and its potential role in cancer prediction, International Journal of Molecular Medicine, vol.35, issue.1, pp.92-102, 2015.
DOI : 10.3892/ijmm.2014.2001

B. Stutchfield, D. Antoine, A. Mackinnon, D. Gow, C. Bain et al., CSF1 restores innate immunity after liver injury in mice and serum levels indicate outcomes of patients with acute liver failure Pretransplant CSF-1 therapy expands recipient macrophages and ameliorates GVHD after allogeneic hematopoietic cell transplantation, Gastroenterology J Exp Med, vol.149, issue.208, pp.1896-1909, 2011.

T. Wynn and K. Vannella, Macrophages in Tissue Repair, Regeneration, and Fibrosis, Immunity, vol.44, issue.3, pp.450-462, 2016.
DOI : 10.1016/j.immuni.2016.02.015

T. Lucas, A. Waisman, R. Ranjan, J. Roes, T. Krieg et al., Differential Roles of Macrophages in Diverse Phases of Skin Repair, The Journal of Immunology, vol.184, issue.7, pp.3964-3977, 2010.
DOI : 10.4049/jimmunol.0903356

L. Vogelpoel, I. Hansen, T. Rispens, F. Muller, T. Van-capel et al., Fc gamma receptor-TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages, Nature Communications, vol.0171, issue.2985, p.5444, 2014.
DOI : 10.1002/art.24406

URL : http://www.nature.com/articles/ncomms6444.pdf

S. Chambers, Role of CSF-1 in progression of epithelial ovarian cancer, Future Oncology, vol.111, issue.9, pp.1429-1440, 2009.
DOI : 10.1016/j.ygyno.2008.06.028

X. Zhu, J. Zhang, P. Zhuang, H. Zhu, W. Zhang et al., High Expression of Macrophage Colony-Stimulating Factor in Peritumoral Liver Tissue Is Associated With Poor Survival After Curative Resection of Hepatocellular Carcinoma, Journal of Clinical Oncology, vol.26, issue.16, pp.2707-2716, 2008.
DOI : 10.1200/JCO.2007.15.6521

L. Yang, Y. Liu, H. An, Y. Chang, W. Zhang et al., High Expression of Colony-Stimulating Factor 1 Receptor Associates with Unfavorable Cancer-Specific Survival of Patients with Clear Cell Renal Cell Carcinoma, Annals of Surgical Oncology, vol.41, issue.21, pp.1044-1052, 2016.
DOI : 10.1016/j.ctrv.2014.12.013

L. Yang, Q. Wu, L. Xu, W. Zhang, Y. Zhu et al., Increased expression of colony stimulating factor-1 is a predictor of poor prognosis in patients with clear-cell renal cell carcinoma, BMC Cancer, vol.115, issue.10, p.67, 2015.
DOI : 10.1002/cncr.24263

Y. Koh, C. Park, D. Yoon, C. Suh, and J. Huh, CSF-1R Expression in Tumor-Associated Macrophages Is Associated With Worse Prognosis in Classical Hodgkin Lymphoma, American Journal of Clinical Pathology, vol.141, issue.4, pp.573-583, 2014.
DOI : 10.1309/AJCPR92TDDFARISU

E. Lin, A. Nguyen, R. Russell, and J. Pollard, Colony-Stimulating Factor 1 Promotes Progression of Mammary Tumors to Malignancy, The Journal of Experimental Medicine, vol.112, issue.6, pp.727-740, 2001.
DOI : 10.1038/sj.onc.1201869

S. Pyonteck, B. Gadea, H. Wang, V. Gocheva, K. Hunter et al., Deficiency of the macrophage growth factor CSF-1 disrupts pancreatic neuroendocrine tumor development, Oncogene, vol.345, issue.11, pp.1459-1467, 2012.
DOI : 10.1038/345442a0

E. Lin, J. Li, L. Gnatovskiy, Y. Deng, L. Zhu et al., Macrophages Regulate the Angiogenic Switch in a Mouse Model of Breast Cancer, Cancer Research, vol.66, issue.23, pp.11238-11246, 2006.
DOI : 10.1158/0008-5472.CAN-06-1278

D. Achkova and J. Maher, Role of the colony-stimulating factor (CSF)/CSF-1 receptor axis in cancer, Biochemical Society Transactions, vol.44, issue.2, pp.333-341, 2016.
DOI : 10.1042/BST20150245

Y. Uemura, M. Kobayashi, H. Nakata, T. Kubota, K. Bandobashi et al., Effects of GM-CSF and M-CSF on tumor progression of lung cancer: Roles of MEK1/ERK and AKT/PKB pathways, International Journal of Molecular Medicine, vol.18, pp.365-373, 2006.
DOI : 10.3892/ijmm.18.2.365

E. Rovida, Colony-Stimulating Factor-1 Receptor in the Polarization of Macrophages: A Target for Turning Bad to Good Ones?, Journal of Clinical & Cellular Immunology, vol.06, issue.06, 2015.
DOI : 10.4172/2155-9899.1000379

C. Ries, M. Cannarile, S. Hoves, J. Benz, K. Wartha et al., Targeting Tumor-Associated Macrophages with Anti-CSF-1R Antibody Reveals a Strategy for Cancer Therapy, Cancer Cell, vol.25, issue.6, pp.846-859, 2014.
DOI : 10.1016/j.ccr.2014.05.016

D. Moughon, H. He, S. Schokrpur, Z. Jiang, M. Yaqoob et al., Macrophage Blockade Using CSF1R Inhibitors Reverses the Vascular Leakage Underlying Malignant Ascites in Late-Stage Epithelial Ovarian Cancer, Cancer Research, vol.75, issue.22, pp.4742-4752, 2015.
DOI : 10.1158/0008-5472.CAN-14-3373

D. Strachan, B. Ruffell, Y. Oei, M. Bissell, L. Coussens et al., CSF1R inhibition delays cervical and mammary tumor growth in murine models by attenuating the turnover of tumorassociated macrophages and enhancing infiltration by CD8+ T cells CSF-1R inhibition alters macrophage polarization and blocks glioma progression, Nat Med, vol.19, pp.1264-1272, 2013.

J. Stafford, T. Hirai, L. Deng, S. Chernikova, K. Urata et al., Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization, Neuro-Oncology, vol.109, issue.(4), pp.797-806, 2016.
DOI : 10.1016/j.cell.2013.03.010

S. Mok, R. Koya, C. Tsui, J. Xu, L. Robert et al., Inhibition of CSF-1 Receptor Improves the Antitumor Efficacy of Adoptive Cell Transfer Immunotherapy, Cancer Research, vol.74, issue.1, pp.153-161, 2014.
DOI : 10.1158/0008-5472.CAN-13-1816

S. Mok, J. Tsoi, R. Koya, S. Hu-lieskovan, B. West et al., Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of BRAF inhibition, BMC Cancer, vol.3, issue.7287, p.356, 2015.
DOI : 10.1038/ncomms1727

N. Weizman, Y. Krelin, A. Shabtay-orbach, M. Amit, Y. Binenbaum et al., Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase, Oncogene, vol.46, issue.29, pp.3812-3819, 2014.
DOI : 10.1038/nature11249

J. Escamilla, S. Schokrpur, C. Liu, S. Priceman, D. Moughon et al., CSF1 Receptor Targeting in Prostate Cancer Reverses Macrophage-Mediated Resistance to Androgen Blockade Therapy, Cancer Research, vol.75, issue.6, pp.950-962, 2015.
DOI : 10.1158/0008-5472.CAN-14-0992

D. Denardo, D. Brennan, E. Rexhepaj, B. Ruffell, S. Shiao et al., Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy, Cancer Discovery, vol.1, issue.1, pp.54-67, 2011.
DOI : 10.1158/2159-8274.CD-10-0028

Y. Zhu, B. Knolhoff, M. Meyer, T. Nywening, B. West et al., CSF1/CSF1R Blockade Reprograms Tumor-Infiltrating Macrophages and Improves Response to T-cell Checkpoint Immunotherapy in Pancreatic Cancer Models, Cancer Research, vol.74, issue.18, pp.5057-5069, 2014.
DOI : 10.1158/0008-5472.CAN-13-3723

M. 69-cannarile, M. Weisser, W. Jacob, A. Jegg, C. Ries et al., Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy CSF1R inhibition with emactuzumab in locally advanced diffuse-type tenosynovial giant cell tumours of the soft tissue: a dose-escalation and dose-expansion phase 1 study, J Immunother Cancer Lancet Oncol, vol.5, issue.16, pp.949-956, 2015.

T. Chihara, S. Suzu, R. Hassan, N. Chutiwitoonchai, M. Hiyoshi et al., IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation, Cell Death & Differentiation, vol.145, issue.12, pp.1917-1927, 2010.
DOI : 10.1093/nar/22.22.4673

A. Segaliny, R. Brion, E. Mortier, M. Maillasson, M. Cherel et al., Syndecan-1 regulates the biological activities of interleukin-34, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1853, issue.5, pp.1010-1021, 2015.
DOI : 10.1016/j.bbamcr.2015.01.023

URL : https://hal.archives-ouvertes.fr/inserm-01644783

S. Nandi, S. Gokhan, X. Dai, S. Wei, G. Enikolopov et al., The CSF-1 receptor ligands IL-34 and CSF-1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation, Developmental Biology, vol.367, issue.2, pp.100-113, 2012.
DOI : 10.1016/j.ydbio.2012.03.026

Y. Wang, K. Szretter, W. Vermi, S. Gilfillan, C. Rossini et al., IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia, Nature Immunology, vol.165, issue.8, pp.753-760, 2012.
DOI : 10.1016/j.immuni.2011.06.005

K. Renaudin, I. Anegon, and C. Guillonneau, IL-34 is a Treg-specific cytokine and mediates transplant tolerance, J Clin Invest, vol.125, pp.3952-3964, 2015.

C. Guillonneau, S. Bezie, and I. Anegon, Immunoregulatory properties of the cytokine IL-34, Cellular and Molecular Life Sciences, vol.6, issue.1, pp.2569-2586, 2017.
DOI : 10.3892/ijmm.2014.2001

G. Yu, Y. Bing, S. Zhu, W. Li, L. Xia et al., Activation of the Interleukin-34 Inflammatory Pathway in Response to Influenza A Virus Infection, The American Journal of the Medical Sciences, vol.349, issue.2, pp.145-150, 2015.
DOI : 10.1097/MAJ.0000000000000373

S. Zwicker, G. Martinez, M. Bosma, M. Gerling, R. Clark et al., Interleukin 34: a new modulator of human and experimental inflammatory bowel disease, Clinical Science, vol.91, issue.3, pp.281-290, 2015.
DOI : 10.1073/pnas.0405979102

F. Zhang, R. Ding, P. Li, C. Ma, D. Song et al., Interleukin-34 in rheumatoid arthritis: potential role in clinical therapy, Int J Clin Exp Med, vol.8, pp.7809-7815, 2015.

H. Wang, J. Cao, and X. Lai, Serum Interleukin-34 Levels Are Elevated in Patients with Systemic Lupus Erythematosus, Molecules, vol.22, issue.12, p.35, 2016.
DOI : 10.1002/art.1780400928

F. Ciccia, A. R. Rodolico, V. Guggino, G. Raimondo, S. Guarnotta et al., IL-34 is overexpressed in the inflamed salivary glands of patients with Sjogren's syndrome and is associated with the local expansion of pro-inflammatory CD14brightCD16+ monocytes, Rheumatology, vol.68, issue.3, pp.1009-1017, 2013.
DOI : 10.1136/ard.2008.087874

S. Cheng, H. Tang, J. Ren, X. Chen, A. Huang et al., Interleukin-34 inhibits hepatitis B virus replication in vitro and in vivo, PLOS ONE, vol.8, issue.10, 2017.
DOI : 10.1371/journal.pone.0179605.t002

E. Foucher, S. Blanchard, L. Preisser, E. Garo, N. Ifrah et al., IL-34 Induces the Differentiation of Human Monocytes into Immunosuppressive Macrophages. Antagonistic Effects of GM-CSF and IFN??, PLoS ONE, vol.145, issue.2, p.56045, 2013.
DOI : 10.1371/journal.pone.0056045.s004

D. Duluc, M. Corvaisier, S. Blanchard, L. Catala, P. Descamps et al., Interferon-?? reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages, International Journal of Cancer, vol.21, issue.2, pp.367-373, 2009.
DOI : 10.4049/jimmunol.168.2.689

S. Zhou, Z. Hu, Z. Zhou, Z. Dai, Z. Wang et al., miR-28-5p-IL-34-macrophage feedback loop modulates hepatocellular carcinoma metastasis, Hepatology, vol.25, issue.5, pp.1560-1575, 2016.
DOI : 10.1200/JCO.2006.09.4565

URL : http://onlinelibrary.wiley.com/doi/10.1002/hep.28445/pdf

M. Baghdadi, H. Wada, S. Nakanishi, H. Abe, N. Han et al., Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-Associated Macrophages and Mediates Survival of Chemoresistant Lung Cancer Cells, Cancer Research, vol.76, issue.20, pp.6030-6042, 2016.
DOI : 10.1158/0008-5472.CAN-16-1170

Y. 87-lavin, A. Mortha, A. Rahman, and M. Merad, Regulation of macrophage development and function in peripheral tissues, Nature Reviews Immunology, vol.510, issue.12, pp.731-744, 2015.
DOI : 10.1038/ni.2967

M. Guilliams, D. Kleer, I. Henri, S. Post, S. Vanhoutte et al., Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF, The Journal of Experimental Medicine, vol.280, issue.10, 1977.
DOI : 10.1089/hum.1998.9.14-2101

L. Egea, Y. Hirata, and M. Kagnoff, GM-CSF: a role in immune and inflammatory reactions in the intestine, Expert Review of Gastroenterology & Hepatology, vol.4, issue.6, pp.723-731, 2010.
DOI : 10.1378/chest.08-2943

P. Bhattacharya, I. Budnick, M. Singh, M. Thiruppathi, K. Alharshawi et al., Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy, Journal of Interferon & Cytokine Research, vol.35, issue.8, pp.585-599, 2015.
DOI : 10.1089/jir.2014.0149

B. Becher, S. Tugues, and M. Greter, GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation, Immunity, vol.45, issue.5, pp.963-973, 2016.
DOI : 10.1016/j.immuni.2016.10.026

G. Reynolds, J. Gibbon, A. Pratt, M. Wood, D. Coady et al., Synovial CD4+ T-cell-derived GM-CSF supports the differentiation of an inflammatory dendritic cell population in rheumatoid arthritis, Annals of the Rheumatic Diseases, vol.168, issue.(Suppl 2), pp.899-907, 2016.
DOI : 10.4049/jimmunol.168.10.5333

A. Cook, A. Turner, E. Braine, J. Pobjoy, J. &. Lenzo et al., Regulation of systemic and local myeloid cell subpopulations by bone marrow cell-derived granulocyte-macrophage colony-stimulating factor in experimental inflammatory arthritis, Arthritis & Rheumatism, vol.14, issue.8, pp.2340-2351, 2011.
DOI : 10.1016/0167-5699(93)90319-G

R. Bischof, D. Zafiropoulos, J. Hamilton, and I. Campbell, Exacerbation of acute inflammatory arthritis by the colony-stimulating factors CSF-1 and granulocyte macrophage (GM)-CSF: evidence of macrophage infiltration and local proliferation, Clinical and Experimental Immunology, vol.139, issue.2, pp.361-367, 2000.
DOI : 10.3109/08977199309010831

I. Campbell, M. Rich, R. Bischof, A. Dunn, D. Grail et al., Protection from collageninduced arthritis in granulocyte-macrophage colonystimulating factor-deficient mice, J Immunol, vol.161, pp.3639-3644, 1998.

C. Plater-zyberk, L. Joosten, M. Helsen, J. Hepp, P. &. Baeuerle et al., GM-CSF neutralisation suppresses inflammation and protects cartilage in acute streptococcal cell wall arthritis of mice, Annals of the Rheumatic Diseases, vol.66, issue.4, pp.452-457, 2007.
DOI : 10.1136/ard.2006.057182

M. El-behi, B. Ciric, H. Dai, Y. Yan, M. Cullimore et al., The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF, Nature Immunology, vol.18, issue.6, pp.568-575, 2011.
DOI : 10.1016/S0022-510X(03)00203-X

R. Noster, R. Riedel, M. Mashreghi, H. Radbruch, L. Harms et al., IL-17 and GM-CSF Expression Are Antagonistically Regulated by Human T Helper Cells, Science Translational Medicine, vol.15, issue.9, pp.241-280, 2014.
DOI : 10.1038/nbt0997-871

I. 99-ifergan, T. Davidson, H. Kebir, D. Xu, D. Palacios-macapagal et al., Targeting the GM-CSF receptor for the treatment of CNS autoimmunity, Journal of Autoimmunity, vol.84, pp.1-11, 2017.
DOI : 10.1016/j.jaut.2017.06.005

A. Fleetwood, T. Lawrence, J. Hamilton, and A. Cook, Granulocyte-Macrophage Colony-Stimulating Factor (CSF) and Macrophage CSF-Dependent Macrophage Phenotypes Display Differences in Cytokine Profiles and Transcription Factor Activities: Implications for CSF Blockade in Inflammation, The Journal of Immunology, vol.178, issue.8, pp.5245-5252, 2007.
DOI : 10.4049/jimmunol.178.8.5245

F. Verreck, T. De-boer, D. Langenberg, M. Hoeve, M. Kramer et al., Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria, Proceedings of the National Academy of Sciences, vol.99, issue.3, pp.4560-4565, 2004.
DOI : 10.1073/pnas.022649799

URL : http://www.pnas.org/content/101/13/4560.full.pdf

K. Palucka and J. Banchereau, Human dendritic cell subsets in vaccination, Current Opinion in Immunology, vol.25, issue.3, pp.396-402, 2013.
DOI : 10.1016/j.coi.2013.05.001

K. Palucka and J. Banchereau, Dendritic-Cell-Based Therapeutic Cancer Vaccines, Immunity, vol.39, issue.1, pp.38-48, 2013.
DOI : 10.1016/j.immuni.2013.07.004

URL : https://doi.org/10.1016/j.immuni.2013.07.004

M. Greter, J. Helft, A. Chow, D. Hashimoto, A. Mortha et al., GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells, Immunity, vol.36, issue.6, pp.1031-1046, 2012.
DOI : 10.1016/j.immuni.2012.03.027

W. Yan, K. Shen, C. Tien, Y. Chen, and S. Liu, Recent progress in GM-CSF-based cancer immunotherapy, Immunotherapy, vol.31, issue.18, pp.347-360, 2017.
DOI : 10.1172/JCI81083

R. Salgia, T. Lynch, A. Skarin, J. Lucca, C. Lynch et al., Vaccination With Irradiated Autologous Tumor Cells Engineered to Secrete Granulocyte-Macrophage Colony-Stimulating Factor Augments Antitumor Immunity in Some Patients With Metastatic Non???Small-Cell Lung Carcinoma, Journal of Clinical Oncology, vol.21, issue.4, pp.624-630, 2003.
DOI : 10.1200/JCO.2003.03.091

I. Hong, Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types, Experimental & Molecular Medicine, vol.16, issue.1074, p.242, 2016.
DOI : 10.1158/1078-0432.CCR-09-1800

R. Soiffer, F. Hodi, F. Haluska, K. Jung, S. Gillessen et al., Vaccination With Irradiated, Autologous Melanoma Cells Engineered to Secrete Granulocyte-Macrophage Colony-Stimulating Factor by Adenoviral-Mediated Gene Transfer Augments Antitumor Immunity in Patients With Metastatic Melanoma, Journal of Clinical Oncology, vol.21, issue.17, pp.3343-3350, 2003.
DOI : 10.1200/JCO.2003.07.005

J. Simons, B. Mikhak, J. Chang, A. Demarzo, M. Carducci et al., Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocytemacrophage colony-stimulating factor using ex vivo gene transfer, Cancer Res, vol.59, pp.5160-5168, 1999.

P. Bhattacharya, M. Thiruppathi, H. Elshabrawy, K. Alharshawi, P. Kumar et al., GM-CSF: An immune modulatory cytokine that can suppress autoimmunity, Cytokine, vol.75, issue.2, pp.261-271, 2015.
DOI : 10.1016/j.cyto.2015.05.030

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553090/pdf

L. Bayne, G. Beatty, N. Jhala, C. Clark, A. Rhim et al., Tumor-Derived Granulocyte-Macrophage Colony-Stimulating Factor Regulates Myeloid Inflammation and T Cell Immunity in Pancreatic Cancer, Cancer Cell, vol.21, issue.6, pp.822-835, 2012.
DOI : 10.1016/j.ccr.2012.04.025

Y. Pylayeva-gupta, K. Lee, C. Hajdu, G. Miller, and D. Bar-sagi, Oncogenic Kras-Induced GM-CSF Production Promotes the Development of Pancreatic Neoplasia, Cancer Cell, vol.21, issue.6, pp.836-847, 2012.
DOI : 10.1016/j.ccr.2012.04.024

R. Urdinguio, A. Fernandez, A. Moncada-pazos, C. Huidobro, R. Rodriguez et al., Immune-Dependent and Independent Antitumor Activity of GM-CSF Aberrantly Expressed by Mouse and Human Colorectal Tumors, Cancer Research, vol.73, issue.1, pp.395-405, 2013.
DOI : 10.1158/0008-5472.CAN-12-0806

E. Boneberg, L. Hareng, F. Gantner, A. Wendel, and T. Hartung, Human monocytes express functional receptors for granulocyte colony-stimulating factor that mediate suppression of monokines and interferon-gamma, Blood, vol.95, pp.270-276, 2000.

R. Kast, Q. Hill, D. Wion, H. Mellstedt, D. Focosi et al., Glioblastoma-synthesized G-CSF and GM-CSF contribute to growth and immunosuppression: Potential therapeutic benefit from dapsone, fenofibrate, and ribavirin, Tumor Biology, vol.19, issue.5, 2017.
DOI : 10.1080/15257770008033036

URL : http://journals.sagepub.com/doi/pdf/10.1177/1010428317699797

A. Martins, J. Han, and S. Kim, The multifaceted effects of granulocyte colony-stimulating factor in immunomodulation and potential roles in intestinal immune homeostasis, IUBMB Life, vol.282, issue.Suppl 1, pp.611-617, 2010.
DOI : 10.1172/JCI17085

M. 117-rossetti, S. Gregori, and M. Roncarolo, Granulocyte-colony stimulating factor drives the in vitro differentiation of human dendritic cells that induce anergy in na??ve T cells, European Journal of Immunology, vol.116, issue.11, pp.3097-3106, 2010.
DOI : 10.4049/jimmunol.166.9.5530

S. Rutella, G. Bonanno, L. Pierelli, A. Mariotti, E. Capoluongo et al., Granulocyte colony-stimulating factor promotes the generation of regulatory DC through induction of IL-10 and IFN-??, European Journal of Immunology, vol.34, issue.5, pp.1291-1302, 2004.
DOI : 10.1002/eji.200324651

M. Arpinati, C. Green, S. Heimfeld, J. Heuser, and C. Anasetti, Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells, Blood, vol.95, pp.2484-2490, 2000.

E. Morris, K. Macdonald, V. Rowe, D. Johnson, T. Banovic et al., Donor treatment with pegylated G-CSF augments the generation of IL-10-producing regulatory T cells and promotes transplantation tolerance, Blood, vol.103, issue.9, pp.3573-3581, 2004.
DOI : 10.1182/blood-2003-08-2864

C. Dejaco, C. Lichtenberger, W. Miehsler, G. Oberhuber, F. Herbst et al., An Open-Label Pilot Study of Granulocyte Colony-Stimulating Factor for the Treatment of Severe Endoscopic Postoperative Recurrence in Crohn???s Disease, Digestion, vol.68, issue.2-3, pp.63-70, 2003.
DOI : 10.1159/000074517

M. Aveni, J. Rossignol, T. Coman, S. Sivakumaran, S. Henderson et al., G-CSF mobilizes CD34+ regulatory monocytes that inhibit graft-versushost disease, Sci Transl Med, vol.7, pp.281-242, 2015.

H. Kared, H. Adle-biassette, E. Fois, A. Masson, J. Bach et al., Jagged2-Expressing Hematopoietic Progenitors Promote Regulatory T Cell Expansion in the Periphery through Notch Signaling, Immunity, vol.25, issue.5, pp.823-834, 2006.
DOI : 10.1016/j.immuni.2006.09.008

H. Kared, A. Masson, H. Adle-biassette, J. Bach, L. Chatenoud et al., Treatment With Granulocyte Colony-Stimulating Factor Prevents Diabetes in NOD Mice by Recruiting Plasmacytoid Dendritic Cells and Functional CD4+CD25+ Regulatory T-Cells, Diabetes, vol.54, issue.1, pp.78-84, 2005.
DOI : 10.2337/diabetes.54.1.78

J. Yan, E. Jambaldorj, J. Lee, J. Jang, J. Shim et al., Granulocyte colony-stimulating factor treatment ameliorates lupus nephritis through the expansion of regulatory T cells, BMC Nephrology, vol.67, issue.7, p.175, 2016.
DOI : 10.1136/ard.2007.083543

U. Bharadwaj, M. Li, R. Zhang, C. Chen, and Q. Yao, Elevated Interleukin-6 and G-CSF in Human Pancreatic Cancer Cell Conditioned Medium Suppress Dendritic Cell Differentiation and Activation, Cancer Research, vol.67, issue.11, pp.5479-5488, 2007.
DOI : 10.1158/0008-5472.CAN-06-3963

E. Ninci, T. Brandstetter, I. Meinhold-heerlein, H. Bettendorf, D. Sellin et al., G-CSF receptor expression in ovarian cancer, International Journal of Gynecological Cancer, vol.10, issue.1, pp.19-26, 2000.
DOI : 10.1046/j.1525-1438.2000.99076.x

C. Sugimoto, S. Fujieda, H. Sunaga, I. Noda, N. Tanaka et al., Granulocyte colony-stimulating factor (G-CSF)-mediated signaling regulates type IV collagenase activity in head and neck cancer cells, International Journal of Cancer, vol.58, issue.1, pp.42-46, 2001.
DOI : 10.1002/(SICI)1096-9896(199909)189:1<40::AID-PATH405>3.0.CO;2-#

K. Morris, H. Khan, A. Ahmad, L. Weston, R. Nofchissey et al., G-CSF and G-CSFR are highly expressed in human gastric and colon cancers and promote carcinoma cell proliferation and migration, British Journal of Cancer, vol.4, issue.5, pp.1211-1220, 2014.
DOI : 10.1007/s10120-005-0335-6

L. Zhang, S. Agarwal, J. Shohet, and P. Zage, CD114 expression mediates melanoma tumor cell growth and treatment resistance, Anticancer Res, vol.35, pp.3787-3792, 2015.

D. Hsu, S. Agarwal, A. Benham, C. Coarfa, D. Trahan et al., G-CSF Receptor Positive Neuroblastoma Subpopulations Are Enriched in Chemotherapy-Resistant or Relapsed Tumors and Are Highly Tumorigenic, Cancer Research, vol.73, issue.13, pp.4134-4146, 2013.
DOI : 10.1158/0008-5472.CAN-12-4056

P. Zage, S. Whittle, and J. Shohet, CD114: A New Member of the Neural Crest-Derived Cancer Stem Cell Marker Family, Journal of Cellular Biochemistry, vol.35, issue.2, pp.221-231, 2017.
DOI : 10.1038/srep17663

M. 133-hollmen, S. Karaman, S. Schwager, A. Lisibach, A. Christiansen et al., G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer, 2016.

K. Morris, E. Castillo, A. Ray, L. Weston, R. Nofchissey et al., Anti-G-CSF treatment induces protective tumor immunity in mouse colon cancer by promoting protective NK cell, macrophage and T cell responses, Oncotarget, vol.6, issue.26, pp.22338-22347, 2015.
DOI : 10.18632/oncotarget.4169

K. Lawlor, I. Campbell, D. Metcalf, O. Donnell, K. Van-nieuwenhuijze et al., Critical role for granulocyte colony-stimulating factor in inflammatory arthritis, Proceedings of the National Academy of Sciences, vol.48, issue.11, pp.11398-11403, 2004.
DOI : 10.1002/art.11301

I. Campbell, M. Rich, R. Bischof, and J. Hamilton, The colony-stimulating factors and collageninduced arthritis: exacerbation of disease by M-CSF and G-CSF and requirement for endogenous M-CSF, 2000.

Y. Delneste, P. Charbonnier, N. Herbault, G. Magistrelli, G. Caron et al., Interferon-gamma switches monocyte differentiation from dendritic cells to macrophages, Blood, vol.101, issue.1, pp.143-150, 2003.
DOI : 10.1182/blood-2002-04-1164

URL : http://www.bloodjournal.org/content/bloodjournal/101/1/143.full.pdf

P. Chomarat, J. Banchereau, J. Davoust, and A. Palucka, IL-6 switches the differentiation of monocytes from dendritic cells to macrophages, Nature Immunology, vol.80, issue.6, pp.510-514, 2000.
DOI : 10.1016/0092-8674(95)90418-2

F. Cheng, H. Wang, A. Cuenca, M. Huang, T. Ghansah et al., A Critical Role for Stat3 Signaling in Immune Tolerance, Immunity, vol.19, issue.3, pp.425-436, 2003.
DOI : 10.1016/S1074-7613(03)00232-2

R. Takahashi, T. Mizuguchi, H. Miyagishi, M. Takeda, K. Kawakami et al., Enhanced cancer immunotherapy using STAT3-depleted dendritic cells with high Th1-inducing ability and resistance to cancer cell-derived inhibitory factors Altered macrophage differentiation and immune dysfunction in tumor development, J Immunol J Clin Invest, vol.187, issue.117, pp.27-36, 2007.

M. Kortylewski, M. Kujawski, T. Wang, S. Wei, S. Zhang et al., Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity, Nature Medicine, vol.187, issue.12, pp.1314-1321, 2005.
DOI : 10.1084/jem.187.11.1753

K. Takaishi, Y. Komohara, H. Tashiro, H. Ohtake, T. Nakagawa et al., Involvement of M2-polarized macrophages in the ascites from advanced epithelial ovarian carcinoma in tumor progression via Stat3 activation, Cancer Science, vol.114, issue.10, pp.2128-2136, 2010.
DOI : 10.1093/jnci/94.8.617

R. Rojo, C. Pridans, D. Langlais, and D. Hume, Transcriptional mechanisms that control expression of the macrophage colony-stimulating factor receptor locus, Clinical Science, vol.131, issue.16, pp.2161-2182, 2017.
DOI : 10.1042/CS20170238

E. Rovida, A. Paccagnini, D. Rosso, M. Peschon, J. Sbarba et al., TNF-??-Converting Enzyme Cleaves the Macrophage Colony-Stimulating Factor Receptor in Macrophages Undergoing Activation, The Journal of Immunology, vol.166, issue.3, pp.1583-1589, 2001.
DOI : 10.4049/jimmunol.166.3.1583

I. Brocheriou, S. Maouche, H. Durand, V. Braunersreuther, L. Naour et al., Antagonistic regulation of macrophage phenotype by M-CSF and GM-CSF: Implication in atherosclerosis, Atherosclerosis, vol.214, issue.2, pp.316-324, 2011.
DOI : 10.1016/j.atherosclerosis.2010.11.023

B. Gliniak and L. Rohrschneider, Expression of the M-CSF receptor is controlled posttranscriptionally by the dominant actions of GM-CSF or multi-CSF, Cell, vol.63, issue.5, pp.1073-1083, 1990.
DOI : 10.1016/0092-8674(90)90510-L

B. Gliniak, L. Park, and L. Rohrschneider, A GM-colony-stimulating factor (CSF) activated ribonuclease system transregulates M-CSF receptor expression in the murine FDC-P1/MAC myeloid cell line., Molecular Biology of the Cell, vol.3, issue.5, pp.535-544, 1992.
DOI : 10.1091/mbc.3.5.535

A. Swierczak, A. Cook, J. Lenzo, C. Restall, J. Doherty et al., The Promotion of Breast Cancer Metastasis Caused by Inhibition of CSF-1R/CSF-1 Signaling Is Blocked by Targeting the G-CSF Receptor, Cancer Immunology Research, vol.2, issue.8, pp.765-776, 2014.
DOI : 10.1158/2326-6066.CIR-13-0190

A. Mantovani and P. Allavena, The interaction of anticancer therapies with tumor-associated macrophages, The Journal of Experimental Medicine, vol.14, issue.4, pp.435-445, 2015.
DOI : 10.1158/1078-0432.CCR-10-1343

K. Weiskopf and I. Weissman, Macrophages are critical effectors of antibody therapies for cancer, mAbs, vol.13, issue.2, pp.303-310, 2015.
DOI : 10.1073/pnas.1305569110

N. Gul and M. Van-egmond, Antibody-Dependent Phagocytosis of Tumor Cells by Macrophages: A Potent Effector Mechanism of Monoclonal Antibody Therapy of Cancer, Cancer Research, vol.75, issue.23, pp.5008-5013, 2015.
DOI : 10.1158/0008-5472.CAN-15-1330

M. Leidi, E. Gotti, L. Bologna, E. Miranda, M. Rimoldi et al., M2 Macrophages Phagocytose Rituximab-Opsonized Leukemic Targets More Efficiently than M1 Cells In Vitro, The Journal of Immunology, vol.182, issue.7, pp.4415-4422, 2009.
DOI : 10.4049/jimmunol.0713732

Y. Kitoh, M. Saio, N. Gotoh, N. Umemura, K. Nonaka et al., Combined GM-CSF treatment and M-CSF inhibition of tumor-associated macrophages induces dendritic cell-like signaling in vitro, International Journal of Oncology, vol.38, issue.5, pp.1409-1419, 2011.
DOI : 10.3892/ijo.2011.960

J. Riepsaame, A. Van-oudenaren, B. Broeder, W. Van-ijcken, J. Pothof et al., MicroRNAmediated down-regulation of M-CSF receptor contributes to maturation of mouse monocyte-derived dendritic cells, Front Immunol, vol.4, p.353, 2013.

W. Pickl, O. Majdic, and W. Knapp, Dendritic Cell Generation from Highly Purified CD14<sup>+</sup> Monocytes, Methods Mol Med, vol.64, pp.283-296, 2001.
DOI : 10.1385/1-59259-150-7:283

A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi et al., The chemokine system in diverse forms of macrophage activation and polarization, Trends in Immunology, vol.25, issue.12, pp.677-686, 2004.
DOI : 10.1016/j.it.2004.09.015

B. Bottazzi, E. Erba, N. Nobili, F. Fazioli, A. Rambaldi et al., A paracrine circuit in the regulation of the proliferation of macrophages infiltrating murine sarcomas, J Immunol, vol.144, pp.2409-2412, 1990.

M. Campbell, N. Tonlaar, E. Garwood, D. Huo, D. Moore et al., Proliferating macrophages associated with high grade, hormone receptor negative breast cancer and poor clinical outcome, Breast Cancer Research and Treatment, vol.24, issue.3, pp.703-711, 2011.
DOI : 10.1200/JCO.2005.04.5518

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4657137/pdf