P. Calvez, S. Bussières, E. Demers, and C. Salesse, Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers, Biochimie, vol.91, issue.6, pp.718-733, 2009.
DOI : 10.1016/j.biochi.2009.03.018

H. Ta, K. Berthelot, B. Coulary-salin, B. Desbat, J. Gean et al., Comparative Studies of Nontoxic and Toxic Amyloids Interacting with Membrane Models at the Air???Water Interface, Langmuir, vol.27, issue.8, pp.4797-4807, 2011.
DOI : 10.1021/la103788r

S. Redon, J. Massin, S. Pouvreau, D. Meulenaere, E. Clays et al., Red Emitting Neutral Fluorescent Glycoconjugates for Membrane Optical Imaging, Bioconjugate Chemistry, vol.25, issue.4, pp.773-787, 2014.
DOI : 10.1021/bc500047r

URL : https://hal.archives-ouvertes.fr/hal-00987486

A. Girard-egrot, J. Chauvet, G. Gillet, and M. Moradi-améli, Specific Interaction of the Antiapoptotic Protein Nr-13 with Phospholipid Monolayers is Prevented by the BH3 Domain of Bax, Journal of Molecular Biology, vol.335, issue.1, pp.321-331, 2004.
DOI : 10.1016/j.jmb.2003.10.028

URL : https://hal.archives-ouvertes.fr/hal-00314325

O. Maniti, M. Lecompte, O. Marcillat, B. Desbat, R. Buchet et al., Mitochondrial Creatine Kinase Binding to Phospholipid Monolayers Induces Cardiolipin Segregation, Biophysical Journal, vol.96, issue.6, pp.2428-2438, 2009.
DOI : 10.1016/j.bpj.2008.12.3911

URL : https://hal.archives-ouvertes.fr/hal-00445382

Y. Guillemin, J. Lopez, D. Gimenez, G. Fuertes, J. Valero et al., Active Fragments from Pro- and Antiapoptotic BCL-2 Proteins Have Distinct Membrane Behavior Reflecting Their Functional Divergence, PLoS ONE, vol.5, issue.2, pp.9066-20140092, 2010.
DOI : 10.1371/journal.pone.0009066.s003

URL : https://hal.archives-ouvertes.fr/hal-00590500

E. ´. Boisselier, P. Calvez, E. ´. Demers, L. Cantin, and C. Salesse, Influence of the Physical State of Phospholipid Monolayers on Protein Binding, Langmuir, vol.28, issue.25, pp.9680-9688, 2012.
DOI : 10.1021/la301135z

L. Francois-moutal, O. Maniti, O. Marcillat, and T. Granjon, New insights into lipid-Nucleoside Diphosphate Kinase-D interaction mechanism: Protein structural changes and membrane reorganisation, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1828, issue.2, pp.906-915, 2013.
DOI : 10.1016/j.bbamem.2012.08.023

URL : https://hal.archives-ouvertes.fr/hal-00917871

A. Bénarouche, V. Point, G. Parsiegla, F. Carrière, and J. Cavalier, New insights into the pH-dependent interfacial adsorption of dog gastric lipase using the monolayer technique, Colloids and Surfaces B: Biointerfaces, vol.111, pp.306-312, 2013.
DOI : 10.1016/j.colsurfb.2013.06.025

S. Rebaud, C. Wang, J. Sarkis, L. Mason, A. Simon et al., Specific interaction to PIP2 increases the kinetic rate of membrane binding of VILIPs, a subfamily of Neuronal Calcium Sensors (NCS) proteins, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1838, issue.10, pp.2698-2707, 2014.
DOI : 10.1016/j.bbamem.2014.06.021

J. Sarkis, J. Rocha, O. Maniti, J. Jouhet, V. Vié et al., The influence of lipids on MGD1 membrane binding highlights novel mechanisms for galactolipid biosynthesis regulation in chloroplasts, The FASEB Journal, vol.258, issue.7
DOI : 10.1016/S0006-3495(98)77970-6

URL : https://hal.archives-ouvertes.fr/hal-00987212

A. Bénarouche, V. Point, F. Carrière, and J. Cavalier, An interfacial and comparative in??vitro study of gastrointestinal lipases and Yarrowia lipolytica LIP2 lipase, a candidate for enzyme replacement therapy, Biochimie, vol.102, pp.145-153, 2014.
DOI : 10.1016/j.biochi.2014.03.004

S. Hénon and J. Meunier, Microscope at the Brewster angle: Direct observation of first???order phase transitions in monolayers, Review of Scientific Instruments, vol.100, issue.4, pp.936-939, 1991.
DOI : 10.1016/0378-4371(81)90025-X

S. Hénon and J. Meunier, Observation of first order phase transitions in monolayers without fluorescent probes, Thin Solid Films, vol.210, issue.211, pp.121-123, 1992.
DOI : 10.1016/0040-6090(92)90186-F

D. Vollhardt, Morphology and phase behavior of monolayers, Advances in Colloid and Interface Science, vol.64, pp.143-171, 1996.
DOI : 10.1016/0001-8686(95)00285-5

D. Marsh, Cholesterol-induced fluid membrane domains: A compendium of lipid-raft ternary phase diagrams, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.10, pp.2114-2123, 2009.
DOI : 10.1016/j.bbamem.2009.08.004

G. Van-meer and A. De-kroon, Lipid map of the mammalian cell, Journal of Cell Science, vol.124, issue.1, pp.5-8, 2011.
DOI : 10.1242/jcs.071233

J. Sarkis, J. Hubert, B. Legrand, E. Robert, A. Cheron et al., Spectrin-like Repeats 11???15 of Human Dystrophin Show Adaptations to a Lipidic Environment, Journal of Biological Chemistry, vol.265, issue.35, pp.30481-30491, 2011.
DOI : 10.1016/j.ymthe.2004.09.013

URL : https://hal.archives-ouvertes.fr/inserm-00712828

C. Larios, J. Miñones, I. Haro, M. Alsina, M. Busquets et al., Study of Adsorption and Penetration of E2(279???298) Peptide into Langmuir Phospholipid Monolayers, The Journal of Physical Chemistry B, vol.110, issue.46, pp.23292-23299, 2006.
DOI : 10.1021/jp0628582

E. Eiríksdóttir, K. Konate, U. ¨. Langel, G. Divita, and S. Deshayes, Secondary structure of cell-penetrating peptides controls membrane interaction and insertion, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1798, issue.6, pp.1119-1128, 2010.
DOI : 10.1016/j.bbamem.2010.03.005

H. Chang, Y. Lin, C. Chern, and S. Lin, Determination of Critical Micelle Concentration of Macroemulsions and Miniemulsions, Langmuir, vol.14, issue.23, pp.6632-6638, 1998.
DOI : 10.1021/la971109w

S. Hait and S. Moulik, Determination of critical micelle concentration (CMC) of nonionic surfactants by donor-acceptor interaction with lodine and correlation of CMC with hydrophile-lipophile balance and other parameters of the surfactants, Journal of Surfactants and Detergents, vol.111, issue.3, pp.303-309, 2001.
DOI : 10.1111/j.2042-7158.1964.tb07456.x

G. Gray and Y. Hj, Lipid compositions of cells isolated from pig, human, and rat epidermis, J Lipid Res, vol.16, pp.434-440, 1975.

R. Pankov, T. Markovska, P. Antonov, L. Ivanova, and A. Momchilova, The plasma membrane lipid composition affects fusion between cells and model membranes, Chemico-Biological Interactions, vol.164, issue.3, pp.167-173, 2006.
DOI : 10.1016/j.cbi.2006.09.010

J. Virtanen, K. Cheng, and P. Somerharju, Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model, Proceedings of the National Academy of Sciences, vol.25, issue.3, pp.4964-4969, 1998.
DOI : 10.1021/bi00371a034

A. Spector and M. Yorek, Membrane lipid composition and cellular function, J Lipid Res, vol.26, pp.1015-1035, 1985.

J. Nagle and D. Wilkinson, Lecithin bilayers. Density measurement and molecular interactions, Biophysical Journal, vol.23, issue.2, pp.159-175, 1978.
DOI : 10.1016/S0006-3495(78)85441-1

M. Baye, G. Mély, Y. Duportail, G. Klymchenko, and A. , Liquid Ordered and Gel Phases of Lipid Bilayers: Fluorescent Probes Reveal Close Fluidity but Different Hydration, Biophys J, vol.95, pp.1217-1225, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00305254

D. Marsh, Lateral pressure in membranes, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.1286, issue.3, pp.183-223, 1996.
DOI : 10.1016/S0304-4157(96)00009-3

S. Sakamoto, H. Nakahara, T. Uto, Y. Shoyama, and O. Shibata, Investigation of interfacial behavior of glycyrrhizin with a lipid raft model via a Langmuir monolayer study, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1828, issue.4, pp.1271-1283, 2013.
DOI : 10.1016/j.bbamem.2013.01.006

J. Ibdah and M. Phillips, Effects of lipid composition and packing on the adsorption of apolipoprotein A-I to lipid monolayers, Biochemistry, vol.27, issue.18, pp.7155-7162, 1988.
DOI : 10.1021/bi00418a073

T. Mcmullen, R. Lewis, and R. Mcelhaney, Cholesterol???phospholipid interactions, the liquid-ordered phase and lipid rafts in model and biological membranes, Current Opinion in Colloid & Interface Science, vol.8, issue.6, pp.459-468, 2004.
DOI : 10.1016/j.cocis.2004.01.007

M. Sankaram and T. Thompson, Interaction of cholesterol with various glycerophospholipids and sphingomyelin, Biochemistry, vol.29, issue.47, pp.10670-10675, 1990.
DOI : 10.1021/bi00499a014

M. Ratajczak, E. Chi, S. Frey, K. Cao, L. Luther et al., Ordered Nanoclusters in Lipid-Cholesterol Membranes, Physical Review Letters, vol.8, issue.2, p.28103, 2009.
DOI : 10.1038/nature02013

F. Maxfield and G. Van-meer, Cholesterol, the central lipid of mammalian cells, Current Opinion in Cell Biology, vol.22, issue.4, pp.422-429, 2010.
DOI : 10.1016/j.ceb.2010.05.004

M. Jurak, Thermodynamic Aspects of Cholesterol Effect on Properties of Phospholipid Monolayers: Langmuir and Langmuir???Blodgett Monolayer Study, The Journal of Physical Chemistry B, vol.117, issue.13, pp.3496-3502, 2013.
DOI : 10.1021/jp401182c

K. Fritzsching, J. Kim, and G. Holland, Probing lipid???cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and 13C solid-state NMR, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1828, issue.8, pp.1889-1898, 2013.
DOI : 10.1016/j.bbamem.2013.03.028

A. Radhakrishnan and H. Mcconnell, Condensed complexes in vesicles containing cholesterol and phospholipids, Proceedings of the National Academy of Sciences, vol.14, issue.3, pp.12662-12666, 2005.
DOI : 10.1097/00041433-200306000-00006

F. Goñi, A. Alonso, L. Bagatolli, R. Brown, D. Marsh et al., Phase diagrams of lipid mixtures relevant to the study of membrane rafts, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1781, issue.11-12, pp.665-684, 2008.
DOI : 10.1016/j.bbalip.2008.09.002

R. De-almeida, L. Loura, and M. Prieto, Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging, Chemistry and Physics of Lipids, vol.157, issue.2, pp.61-77, 2009.
DOI : 10.1016/j.chemphyslip.2008.07.011

G. Feigenson, Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1788, issue.1, pp.47-52, 2009.
DOI : 10.1016/j.bbamem.2008.08.014

M. Eeman and M. Deleu, From biological membranes to biomimetic model membranes, Biotechnol Agron Soc, vol.14, pp.719-736, 2010.

P. Quinn, A lipid matrix model of membrane raft structure, Progress in Lipid Research, vol.49, issue.4, pp.390-406, 2010.
DOI : 10.1016/j.plipres.2010.05.002

P. Calvez, T. Schmidt, L. Cantin, K. Klinker, and C. Salesse, Phosphatidylserine Allows Observation of the Calcium???Myristoyl Switch of Recoverin and Its Preferential Binding, Journal of the American Chemical Society, vol.138, issue.41, pp.13533-13540, 2016.
DOI : 10.1021/jacs.6b04218

A. Hädicke and A. Blume, K to Lipid Monolayers at the Air???Water Interface: Effect of Lipid Headgroup Charge, Acyl Chain Length, and Acyl Chain Saturation, The Journal of Physical Chemistry B, vol.120, issue.16, pp.3880-3887, 2016.
DOI : 10.1021/acs.jpcb.6b01558

S. Lukasz, M. Honigmann, A. , M. Henrik, S. et al., Membrane orientation and lateral diffusion of BODIPY-Cholesterol as a function of probe structure, Biophys J, vol.105, pp.2082-2092, 2013.

B. Mattei, A. França, and K. Riske, Solubilization of Binary Lipid Mixtures by the Detergent Triton X-100: The Role of Cholesterol, Langmuir, vol.31, issue.1, pp.378-386, 2015.
DOI : 10.1021/la504004r

M. Johnson, Detergents: Triton X-100, Tween-20, and More, Mater Methods, vol.3, p.163, 2013.
DOI : 10.13070/mm.en.3.163

C. Bruna, R. , D. Cleyton, C. De-paula, E. et al., Direct visualization of the action of Triton X-100 on giant vesicles of erythrocyte membrane lipids, Biophys J, vol.106, pp.2417-2425, 2014.

G. Abi-rizk and F. Besson, Interactions of Triton X-100 with sphingomyelin and phosphatidylcholine monolayers: Influence of the cholesterol content, Colloids and Surfaces B: Biointerfaces, vol.66, issue.2, pp.163-167, 2008.
DOI : 10.1016/j.colsurfb.2008.06.002

URL : https://hal.archives-ouvertes.fr/hal-00353070

A. Helenius and K. Simons, Solubilization of membranes by detergents, Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, vol.415, issue.1, pp.29-79, 1975.
DOI : 10.1016/0304-4157(75)90016-7

M. Mahmood and D. Al-koofee, Effect of temperature changes on critical micelle concentration for Tween series surfactant, Global J Sci Frontier Res Chem, vol.13, pp.1-7, 2013.

T. Sudbrack, N. Archilha, R. Itri, and K. Riske, Observing the Solubilization of Lipid Bilayers by Detergents with Optical Microscopy of GUVs, The Journal of Physical Chemistry B, vol.115, issue.2, pp.269-277, 2011.
DOI : 10.1021/jp108653e

F. Sarfo, R. Phillips, J. Zhang, M. Abass, J. Abotsi et al., Kinetics of mycolactone in human subcutaneous tissue during antibiotic therapy for Mycobacterium ulcerans disease, BMC Infectious Diseases, vol.123, issue.4, pp.1-10, 2014.
DOI : 10.1172/JCI66576

F. Sarfo, L. Chevalier, F. Aka, N. Phillips, R. Amoako et al., Mycolactone Diffuses into the Peripheral Blood of Buruli Ulcer Patients - Implications for Diagnosis and Disease Monitoring, PLoS Neglected Tropical Diseases, vol.9, issue.7, pp.1237-21811642, 2011.
DOI : 10.1371/journal.pntd.0001237.t001

URL : https://hal.archives-ouvertes.fr/inserm-00691438

F. Sarfo, P. Converse, D. Almeida, J. Zhang, C. Robinson et al., Microbiological, Histological, Immunological, and Toxin Response to Antibiotic Treatment in the Mouse Model of Mycobacterium ulcerans Disease, PLoS Neglected Tropical Diseases, vol.5, issue.3, p.23516649, 2013.
DOI : 10.1371/journal.pntd.0002101.t001

P. Wydro, S. Knapczyk, and M. ?apczy?ska, Variations in the Condensing Effect of Cholesterol on Saturated versus Unsaturated Phosphatidylcholines at Low and High Sterol Concentration, Langmuir, vol.27, issue.9, pp.5433-5444, 2011.
DOI : 10.1021/la105142w

G. Shih, L. , A. Jonathan, J. , F. Gerald et al., Toward a better raft model: Modulated phases in the four-component bilayer, Biophys J, vol.104, pp.853-862, 2013.

A. Radhakrishnan, T. Anderson, and H. Mcconnell, Condensed complexes, rafts, and the chemical activity of cholesterol in membranes, Proceedings of the National Academy of Sciences, vol.273, issue.40, pp.12422-12427, 2000.
DOI : 10.1074/jbc.273.40.25537

R. Lindner and H. Naim, Domains in biological membranes, Experimental Cell Research, vol.315, issue.17, pp.2871-2878, 2009.
DOI : 10.1016/j.yexcr.2009.07.020

D. Lingwood and K. Simons, Lipid Rafts As a Membrane-Organizing Principle, Science, vol.5, issue.8, pp.46-50, 2010.
DOI : 10.1038/ncb0803-684

K. Simons and M. Gerl, Revitalizing membrane rafts: new tools and insights, Nature Reviews Molecular Cell Biology, vol.74, issue.10, pp.688-699, 2010.
DOI : 10.1091/mbc.10.4.1043

K. Simons and E. Ikonen, Functional rafts in cell membranes, Nature, vol.128, issue.6633, pp.569-572, 1997.
DOI : 10.1083/jcb.128.6.1043

A. Lamazière, G. Chassaing, G. Trugnan, and J. Ayala-sanmartin, Tubular structures in heterogeneous membranes induced by the cell penetrating peptide Penetratin, Communicative & Integrative Biology, vol.2, issue.3, pp.223-224, 2009.
DOI : 10.4161/cib.2.3.8073

A. Rozelle, L. Machesky, M. Yamamoto, M. Driessens, R. Insall et al., Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3, Current Biology, vol.10, issue.6
DOI : 10.1016/S0960-9822(00)00384-5

R. Rohatgi, H. Ho, and M. Kirschner, Mechanism of N-Wasp Activation by Cdc42 and Phosphatidylinositol 4,5-Bisphosphate, The Journal of Cell Biology, vol.15, issue.6, pp.1299-1310, 2000.
DOI : 10.1016/S0960-9822(99)80243-7

T. Golde, C. Zwizinski, and A. Nyborg, Signal Peptide Peptidases Intramembrane-Cleaving Proteases (I-CLiPs) The Netherlands, pp.17-30, 2007.

T. Golde, M. Wolfe, and D. Greenbaum, Signal peptide peptidases: A family of intramembrane-cleaving proteases that cleave type 2 transmembrane proteins, Seminars in Cell & Developmental Biology, vol.20, issue.2, pp.225-230, 2009.
DOI : 10.1016/j.semcdb.2009.02.003

T. Hayashi and T. Su, Cholesterol at the Endoplasmic Reticulum: Roles of the Sigma-1 Receptor Chaperone and Implications thereof in Human Diseases, Subcell Biochem, vol.51, pp.381-398, 2010.
DOI : 10.1007/978-90-481-8622-8_13

C. Gajate and F. Mollinedo, Lipid Rafts, Endoplasmic Reticulum and Mitochondria in the Antitumor Action of the Alkylphospholipid Analog Edelfosine, Anti-Cancer Agents in Medicinal Chemistry, vol.14, issue.4, pp.509-527, 2014.
DOI : 10.2174/1871520614666140309222259

E. Boslem, J. Weir, G. Macintosh, N. Sue, J. Cantley et al., Alteration of Endoplasmic Reticulum Lipid Rafts Contributes to Lipotoxicity in Pancreatic ??-Cells, Journal of Biological Chemistry, vol.1771, issue.37, pp.26569-26582, 2013.
DOI : 10.1038/nature09968

O. Diaz, S. Mébarek-azzam, A. Benzaria, M. Dubois, M. Lagarde et al., Disruption of Lipid Rafts Stimulates Phospholipase D Activity in Human Lymphocytes: Implication in the Regulation of Immune Function, The Journal of Immunology, vol.175, issue.12, pp.8077-8086, 2005.
DOI : 10.4049/jimmunol.175.12.8077

E. Kuech, H. Shammas, K. Maalouf, V. Koeckritz-blickwede, M. Das et al., Lipid raft abnormalities and subsequent protein trafficking effects in Niemann-Pick type C1 (LB158), FASEB J, vol.28, 2014.

M. Amiri, E. Kuech, H. Shammas, G. Wetzel, H. Naim et al., The Pathobiochemistry of Gastrointestinal Symptoms in a Patient with Niemann-Pick Type C Disease, JIMD Reports, pp.25-29, 2016.
DOI : 10.1515/BC.2009.077

T. Nieto-miguel, R. Fonteriz, L. Vay, C. Gajate, S. López-hernández et al., Endoplasmic Reticulum Stress in the Proapoptotic Action of Edelfosine in Solid Tumor Cells, Cancer Research, vol.67, issue.21, pp.10368-10378, 2007.
DOI : 10.1158/0008-5472.CAN-07-0278

F. Mollinedo, M. Fernández, V. Hornillos, J. Delgado, F. Amat-guerri et al., Involvement of lipid rafts in the localization and dysfunction effect of the antitumor ether phospholipid edelfosine in mitochondria, Cell Death & Disease, vol.137, issue.5, pp.158-21593790, 2011.
DOI : 10.1038/sj.bjp.0704953

E. Marion, S. Prado, C. Cano, J. Babonneau, S. Ghamrawi et al., Photodegradation of the Mycobacterium ulcerans Toxin, Mycolactones: Considerations for Handling and Storage, PLoS ONE, vol.7, issue.4, pp.33600-22514607, 2012.
DOI : 10.1371/journal.pone.0033600.s003