N. Gaspar, D. Hawkins, U. Dirksen, I. Lewis, S. Ferrari et al., Ewing Sarcoma: Current Management and Future Approaches Through Collaboration, Journal of Clinical Oncology, vol.33, issue.27, 2015.
DOI : 10.1200/JCO.2014.59.5256

R. Gorlick, K. Janeway, S. Lessnick, R. Randall, N. Marina et al., Children's Oncology Group's 2013 blueprint for research: Bone tumors, Pediatric Blood & Cancer, vol.80, issue.6, pp.1009-1015, 2013.
DOI : 10.1002/(SICI)1097-0142(19970715)80:2<317::AID-CNCR21>3.0.CO;2-W

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610028/pdf

N. Esiashvili, M. Goodman, R. Marcus, and J. , Changes in Incidence and Survival of Ewing Sarcoma Patients Over the Past 3 Decades, Journal of Pediatric Hematology/Oncology, vol.30, issue.6, pp.425-430, 2008.
DOI : 10.1097/MPH.0b013e31816e22f3

H. Kovar, J. Alonso, P. Aman, D. Aryee, J. Ban et al., The First European Interdisciplinary Ewing Sarcoma Research Summit, Frontiers in Oncology, vol.2, p.54, 2012.
DOI : 10.3389/fonc.2012.00054

A. Brohl, D. Solomon, C. W. Wang, J. Song, Y. Sindiri et al., The Genomic Landscape of the Ewing Sarcoma Family of Tumors Reveals Recurrent STAG2 Mutation, PLoS Genetics, vol.28, issue.7, p.1004475, 2014.
DOI : 10.1371/journal.pgen.1004475.s022

B. Crompton, C. Stewart, A. Taylor-weiner, G. Alexe, K. Kurek et al., The genomic landscape of pediatric Ewing sarcoma. Cancer discovery, pp.1326-1341, 2014.

M. Lawrence, P. Stojanov, C. Mermel, J. Robinson, L. Garraway et al., Discovery and saturation analysis of cancer genes across 21 tumour types, Nature, vol.505, issue.7484, pp.495-501, 2014.
DOI : 10.1002/ijc.25516

F. Tirode, D. Surdez, X. Ma, M. Parker, L. Deley et al., Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer discovery, pp.1342-1353, 2014.

K. Agelopoulos, G. Richter, E. Schmidt, U. Dirksen, K. Von-heyking et al., Deep Sequencing in Conjunction with Expression and Functional Analyses Reveals Activation of FGFR1 in Ewing Sarcoma Clin Cancer Res, 2015.

N. Riggi, B. Knoechel, S. Gillespie, E. Rheinbay, G. Boulay et al., EWS-FLI1??Utilizes Divergent Chromatin Remodeling Mechanisms to Directly Activate or Repress Enhancer Elements in Ewing Sarcoma, Cancer Cell, vol.26, issue.5, pp.668-681, 2014.
DOI : 10.1016/j.ccell.2014.10.004

E. Tomazou, N. Sheffield, C. Schmidl, M. Schuster, A. Schonegger et al., Epigenome Mapping Reveals Distinct Modes of Gene Regulation and Widespread Enhancer Reprogramming by the Oncogenic Fusion Protein EWS-FLI1 Cell reports, 2015.

S. Sankar, E. Theisen, J. Bearss, T. Mulvihill, L. Hoffman et al., Reversible LSD1 Inhibition Interferes with Global EWS/ETS Transcriptional Activity and Impedes Ewing Sarcoma Tumor Growth, Clinical Cancer Research, vol.20, issue.17, pp.4584-4597, 2014.
DOI : 10.1158/1078-0432.CCR-14-0072

URL : http://clincancerres.aacrjournals.org/content/clincanres/20/17/4584.full.pdf

L. Calzone, E. Barillot, and A. Zinovyev, Predicting genetic interactions from Boolean models of biological networks Integrative biology : quantitative biosciences from nano to macro, pp.921-929, 2015.

M. Tanaka, S. Yamaguchi, Y. Yamazaki, H. Kinoshita, K. Kuwahara et al., Somatic chromosomal translocation between Ewsr1 and Fli1 loci leads to dilated cardiomyopathy in a mouse model Scientific reports, p.7826, 2015.

M. Tanaka, Y. Yamazaki, Y. Kanno, K. Igarashi, K. Aisaki et al., Ewing???s sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors, Journal of Clinical Investigation, vol.124, issue.7, pp.3061-3074, 2014.
DOI : 10.1172/JCI72399DS1

A. Sparmann and M. Van-lohuizen, Polycomb silencers control cell fate, development and cancer, Nature Reviews Cancer, vol.116, issue.11, pp.846-856, 2006.
DOI : 10.1016/S0301-472X(00)00620-2

C. Von-levetzow, X. Jiang, Y. Gwye, G. Von-levetzow, L. Hung et al., Modeling Initiation of Ewing Sarcoma in Human Neural Crest Cells, PLoS ONE, vol.5, issue.4, p.19305, 2011.
DOI : 10.1371/journal.pone.0019305.s004

L. Svoboda, A. Harris, N. Bailey, R. Schwentner, E. Tomazou et al., Overexpression of HOX genes is prevalent in Ewing sarcoma and is associated with altered epigenetic regulation of developmental transcription programs, Epigenetics, vol.9, issue.12, pp.1613-1625, 2014.
DOI : 10.1038/nprot.2008.211

J. Killian, S. Kim, M. Miettinen, C. Smith, M. Merino et al., Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer discovery, pp.648-657, 2013.

F. Tirode, K. Laud-duval, A. Prieur, B. Delorme, P. Charbord et al., Mesenchymal Stem Cell Features of Ewing Tumors, Cancer Cell, vol.11, issue.5, pp.421-429, 2007.
DOI : 10.1016/j.ccr.2007.02.027

C. Scannell, E. Pedersen, J. Mosher, M. Krook, L. Nicholls et al., LGR5 is Expressed by Ewing Sarcoma and Potentiates Wnt/beta- Catenin Signaling Flow perfusion effects on threedimensional culture and drug sensitivity of Ewing sarcoma, Proceedings of the National Academy of Sciences of the United States of America, pp.10304-10309, 2013.

B. Qiu and M. Simon, Oncogenes strike a balance between cellular growth and homeostasis. Seminars in cell & developmental biology, 2015.

A. El-naggar, C. Veinotte, H. Cheng, T. Grunewald, G. Negri et al., Translational Activation of HIF1?? by YB-1 Promotes Sarcoma Metastasis, Cancer Cell, vol.27, issue.5, pp.682-697, 2015.
DOI : 10.1016/j.ccell.2015.04.003

S. Somasekharan, A. El-naggar, G. Leprivier, H. Cheng, S. Hajee et al., YB-1 regulates stress granule formation and tumor progression by translationally activating G3BP1, The Journal of Cell Biology, vol.2011, issue.7, pp.913-929, 2015.
DOI : 10.3748/wjg.v13.i30.4126

URL : http://jcb.rupress.org/content/jcb/208/7/913.full.pdf

S. Postel-vinay, A. Veron, F. Tirode, G. Pierron, S. Reynaud et al., Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma Nature genetics, 2012.

T. Grunewald, V. Bernard, P. Gilardi-hebenstreit, V. Raynal, D. Surdez et al., Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite, Nature Genetics, vol.83, issue.9, pp.1073-1078, 2015.
DOI : 10.1093/nar/gks1048

M. Howarth, M. Simpson, D. Ngok, S. Nieves, B. Chen et al., Long noncoding RNA EWSAT1-mediated gene repression facilitates Ewing sarcoma oncogenesis. The Journal of clinical investigation, pp.5275-5290, 2014.

A. Kennedy, M. Vallurupalli, L. Chen, B. Crompton, G. Cowley et al., Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma, Oncotarget, vol.6, issue.30, pp.30178-93, 2015.
DOI : 10.18632/oncotarget.4903

S. Tang, S. Bilke, L. Cao, J. Murai, F. Sousa et al., SLFN11 Is a Transcriptional Target of EWS-FLI1 and a Determinant of Drug Response in Ewing Sarcoma, Clinical Cancer Research, vol.21, issue.18, 2015.
DOI : 10.1158/1078-0432.CCR-14-2112

J. Ordonez, A. Amaral, A. Carcaboso, D. Herrero-martin, D. C. Garcia-macias et al., The PARP inhibitor olaparib enhances the sensitivity of Ewing sarcoma to trabectedin, Oncotarget, vol.6, pp.18875-18890, 2015.

J. Brenner, F. Feng, S. Han, S. Patel, S. Goyal et al., PARP-1 inhibition as a targeted strategy to treat Ewing's sarcoma. Cancer research, pp.1608-1613, 2012.

P. Grohar, L. Segars, C. Yeung, Y. Pommier, D. Incalci et al., Dual Targeting of EWS-FLI1 Activity and the Associated DNA Damage Response with Trabectedin and SN38 Synergistically Inhibits Ewing Sarcoma Cell Growth, Clinical Cancer Research, vol.20, issue.5, pp.1190-1203, 2014.
DOI : 10.1158/1078-0432.CCR-13-0901

S. Selvanathan, G. Graham, H. Erkizan, U. Dirksen, T. Natarajan et al., Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing, Proceedings of the National Academy of Sciences, vol.17, issue.10, pp.1307-1316, 2015.
DOI : 10.1200/JCO.2011.41.5703

J. Toretsky and P. Wright, Assemblages: Functional units formed by cellular phase separation, The Journal of Cell Biology, vol.9, issue.5, pp.579-588, 2014.
DOI : 10.1038/msb.2009.80

URL : http://jcb.rupress.org/content/jcb/206/5/579.full.pdf