S. Kornfeld, M. Reitman, A. Varki, D. Goldberg, and C. Gabel, Steps in the Phosphorylation of the High Mannose Oligosaccharides of Lysosomal Enzymes, Ciba Found Symp, vol.63, issue.92, pp.138-56, 1982.
DOI : 10.1172/JCI109341

M. Reitman and S. Kornfeld, Lysosomal enzyme targeting. N-Acetylglucosaminylphosphotransferase selectively phosphorylates native lysosomal enzymes, J Biol Chemi, vol.256, issue.23, pp.11977-80, 1981.

S. Tiede, S. Storch, and T. Lubke, Mucolipidosis II is caused by mutations in GNPTA encoding the ??/?? GlcNAc-1-phosphotransferase, Nature Medicine, vol.368, issue.10, pp.1109-1121, 2005.
DOI : 10.1042/bj20020249

M. Kudo, M. Bao, D. Souza, and A. , The alpha-and beta-subunits of the human UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglu- cosamine-1-phosphotransferase are encoded by a single cDNA

Y. Qian, I. Lee, and W. Lee, -Acetylglucosamine-1-phosphotransferase, Journal of Biological Chemistry, vol.267, issue.5, pp.3360-70, 2010.
DOI : 10.1074/jbc.272.2.852

K. Marschner, K. Kollmann, M. Schweizer, T. Braulke, and S. Pohl, A Key Enzyme in the Biogenesis of Lysosomes Is a Protease That Regulates Cholesterol Metabolism, Science, vol.137, issue.3, pp.87-90, 2011.
DOI : 10.1002/ajmg.a.30868

K. Kollmann, S. Pohl, and K. Marschner, Mannose phosphorylation in health and disease, European Journal of Cell Biology, vol.89, issue.1, pp.117-140, 2010.
DOI : 10.1016/j.ejcb.2009.10.008

J. Leroy, S. Cathey, M. Friez, R. Pagon, M. Adam et al., Mucolipidosis II, GeneReviews 1 [Internet], 1993.

S. Cathey, J. Leroy, and T. Wood, Phenotype and genotype in mucolipidoses II and III alpha/beta: a study of 61 probands, Journal of Medical Genetics, vol.47, issue.1, pp.38-48, 2010.
DOI : 10.1136/jmg.2009.067736

M. Kudo, M. Brem, and W. Canfield, Mucolipidosis II (I-Cell Disease) and Mucolipidosis IIIA (Classical Pseudo-Hurler Polydystrophy) Are Caused by Mutations in the GlcNAc-Phosphotransferase ??/?????Subunits Precursor Gene, The American Journal of Human Genetics, vol.78, issue.3, pp.451-63, 2006.
DOI : 10.1086/500849

G. David-vizcarra, J. Briody, and J. Ault, The natural history and osteodystrophy of mucolipidosis types II and III, Journal of Paediatrics and Child Health, vol.33, issue.6, pp.316-338, 2010.
DOI : 10.2214/ajr.118.1.213

T. Herman and W. Mcalister, Neonatal mucolipidosis II (I-cell disease) with dysharmonic epiphyseal ossification and butterfly vertebral body, J Perinatol, vol.16, issue.5, pp.400-402, 1996.

R. Sprigz, R. Doughty, and T. Spackman, Neonatal presentation of I-cell disease, The Journal of Pediatrics, vol.93, issue.6, pp.954-962, 1978.
DOI : 10.1016/S0022-3476(78)81218-9

H. Flanagan-steet, C. Sias, and R. Steet, Altered Chondrocyte Differentiation and Extracellular Matrix Homeostasis in a Zebrafish Model for Mucolipidosis II, The American Journal of Pathology, vol.175, issue.5, pp.2063-75, 2009.
DOI : 10.2353/ajpath.2009.090210

A. Petrey, H. Flanagan-steet, and S. Johnson, Excessive activity of cathepsin K is associated with cartilage defects in a zebrafish model of mucolipidosis II, Disease Models & Mechanisms, vol.5, issue.2, pp.177-90, 2012.
DOI : 10.1242/dmm.008219

N. Lawson and B. Weinstein, In Vivo Imaging of Embryonic Vascular Development Using Transgenic Zebrafish, Developmental Biology, vol.248, issue.2, pp.307-325, 2002.
DOI : 10.1006/dbio.2002.0711

A. Delaurier, B. Eames, and B. Blanco-sanchez, Zebrafish sp7:EGFP: A transgenic for studying otic vesicle formation, skeletogenesis, and bone regeneration, genesis, vol.329, issue.8, pp.505-516, 2010.
DOI : 10.1002/aja.1002030302

R. Collery and B. Link, Dynamic smad-mediated BMP signaling revealed through transgenic zebrafish, Developmental Dynamics, vol.1, issue.Pt 2, pp.712-734, 2011.
DOI : 10.1016/S1097-2765(00)80061-1

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3072245/pdf

R. Mitchell, L. Huitema, and R. Skinner, New tools for studying osteoarthritis genetics in zebrafish, Osteoarthritis and Cartilage, vol.21, issue.2, pp.269-78, 2013.
DOI : 10.1016/j.joca.2012.11.004

C. Kimmel, W. Ballard, S. Kimmel, B. Ullmann, and T. Schilling, Stages of embryonic development of the zebrafish, Developmental Dynamics, vol.102, issue.3, pp.253-310, 1995.
DOI : 10.1016/0168-9525(93)90039-K

S. Mangos, P. Lam, and A. Zhao, The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation, Dis Model Mech, vol.3, pp.5-6354, 2010.
DOI : 10.1242/dmm.003194

URL : http://dmm.biologists.org/content/dmm/3/5-6/354.full.pdf

C. Thisse and B. Thisse, High-resolution in situ hybridization to whole-mount zebrafish embryos, Nature Protocols, vol.75, issue.1, pp.59-69, 2008.
DOI : 10.1038/nprot.2007.514

N. Li, K. Felber, P. Elks, P. Croucher, and H. Roehl, Tracking gene expression during zebrafish osteoblast differentiation, Developmental Dynamics, vol.328, issue.2, pp.459-66, 2009.
DOI : 10.1016/j.bbrc.2004.11.067

J. Kang, T. Oohashi, Y. Kawakami, Y. Bekku, I. Belmonte et al., Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones, Mechanisms of Development, vol.121, issue.3, pp.301-313, 2004.
DOI : 10.1016/j.mod.2004.01.007

Y. Javidan and T. Schilling, Development of Cartilage and Bone, Methods Cell Biol, vol.76, pp.415-451, 2004.
DOI : 10.1016/S0091-679X(04)76018-5

M. Goldring, K. Tsuchimochi, and K. Ijiri, The control of chondrogenesis, Journal of Cellular Biochemistry, vol.28, issue.1, pp.33-44, 2006.
DOI : 10.1002/aja.1001990206

W. Bi, J. Deng, Z. Zhang, R. Behringer, and B. De-crombrugghe, Sox9 is required for cartilage formation, Nature Genetics, vol.1130, issue.1, pp.85-94, 1999.
DOI : 10.1016/0167-4781(92)90465-C

W. Bi, W. Huang, and D. Whitworth, Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization, Proceedings of the National Academy of Sciences, vol.17, issue.19, pp.6698-703, 2001.
DOI : 10.1093/emboj/17.19.5718

Y. Yan, J. Willoughby, and D. Liu, A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development, Development, vol.132, issue.5, pp.1069-83, 2005.
DOI : 10.1242/dev.01674

B. Olsen, A. Reginato, and W. Wang, Bone Development, Annual Review of Cell and Developmental Biology, vol.16, issue.1, pp.191-220, 2000.
DOI : 10.1146/annurev.cellbio.16.1.191

URL : https://hal.archives-ouvertes.fr/hal-00306959

K. Kollmann, J. Pestka, and S. Kuhn, Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II, EMBO Molecular Medicine, vol.17, issue.12, pp.1871-86, 2013.
DOI : 10.1038/nm.2448

URL : http://embomolmed.embopress.org/content/embomm/5/12/1871.full.pdf

H. Mazrier, M. Van-hoeven, and P. Wang, Inheritance, Biochemical Abnormalities, and Clinical Features of Feline Mucolipidosis II: The First Animal Model of Human I-Cell Disease, Journal of Heredity, vol.94, issue.5, pp.363-73, 2003.
DOI : 10.1093/jhered/esg080

Y. Yan, C. Miller, and R. Nissen, A zebrafish sox9 gene required for cartilage morphogenesis, Development, vol.129, issue.21, pp.5065-79, 2002.

Y. Qian, H. Flanagan-steet, E. Van-meel, R. Steet, and S. Kornfeld, The DMAP interaction domain of UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is a substrate recognition module, Proceedings of the National Academy of Sciences, vol.203, issue.3, pp.10246-51, 2013.
DOI : 10.1002/aja.1002030302

M. Walker and C. Kimmel, A two-color acid-free cartilage and bone stain for zebrafish larvae, Biotechnic & Histochemistry, vol.295, issue.1, pp.23-31, 2007.
DOI : 10.1016/j.ydbio.2006.03.028

T. Furumatsu, M. Tsuda, N. Taniguchi, Y. Tajima, and H. Asahara, Smad3 Induces Chondrogenesis through the Activation of SOX9 via CREB-binding Protein/p300 Recruitment, Journal of Biological Chemistry, vol.19, issue.9, pp.8343-50, 2005.
DOI : 10.1074/jbc.M005724200

F. Lecaille, D. Bromme, and G. Lalmanach, Biochemical properties and regulation of cathepsin K activity, Biochimie, vol.90, issue.2, pp.208-234, 2008.
DOI : 10.1016/j.biochi.2007.08.011

X. Fan, M. Klein, H. Flanagan-steet, and R. Steet, Selective Yolk Deposition and Mannose Phosphorylation of Lysosomal Glycosidases in Zebrafish, Journal of Biological Chemistry, vol.266, issue.43, pp.32946-53, 2010.
DOI : 10.1042/BJ20030413

I. Robertson and D. Rifkin, Unchaining the beast; insights from structural and evolutionary studies on TGF?? secretion, sequestration, and activation, Cytokine & Growth Factor Reviews, vol.24, issue.4, pp.355-72, 2013.
DOI : 10.1016/j.cytogfr.2013.06.003

M. Abe, J. Harpel, C. Metz, I. Nunes, D. Loskutoff et al., An Assay for Transforming Growth Factor-?? Using Cells Transfected with a Plasminogen Activator Inhibitor-1 Promoter-Luciferase Construct, Analytical Biochemistry, vol.216, issue.2, pp.276-84, 1994.
DOI : 10.1006/abio.1994.1042

K. Miyazono, A. Olofsson, P. Colosetti, and C. Heldin, A role of the latent TGF-beta 1-binding protein in the assembly and secretion of TGF-beta 1, EMBO J, vol.10, issue.5, pp.1091-101, 1991.

L. Zilberberg, P. Ten-dijke, L. Sakai, and D. Rifkin, A rapid and sensitive bioassay to measure bone morphogenetic protein activity, BMC Cell Biology, vol.8, issue.1, p.41, 2007.
DOI : 10.1186/1471-2121-8-41

URL : https://bmccellbiol.biomedcentral.com/track/pdf/10.1186/1471-2121-8-41?site=bmccellbiol.biomedcentral.com

T. Furumatsu, T. Ozaki, and H. Asahara, Smad3 activates the Sox9-dependent transcription on chromatin, The International Journal of Biochemistry & Cell Biology, vol.41, issue.5, pp.1198-204, 2009.
DOI : 10.1016/j.biocel.2008.10.032

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2674534/pdf

J. Chimal-monroy, J. Rodriguez-leon, and J. Montero, Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: sox genes and BMP signaling, Developmental Biology, vol.257, issue.2, pp.292-301, 2003.
DOI : 10.1016/S0012-1606(03)00066-6

E. Van-meel, M. Boonen, and H. Zhao, Disruption of the Man-6-P Targeting Pathway in Mice Impairs Osteoclast Secretory Lysosome Biogenesis, Traffic, vol.258, issue.7, pp.912-936, 2011.
DOI : 10.1091/mbc.E09-05-0398

T. Otomo, M. Schweizer, and K. Kollmann, Mannose 6 phosphorylation of lysosomal enzymes controls B cell functions, The Journal of Cell Biology, vol.256, issue.2, pp.171-80, 2015.
DOI : 10.1083/jcb.201407077.dv

H. Dietz, TGF-?? in the pathogenesis and prevention of disease: a matter of aneurysmic proportions, Journal of Clinical Investigation, vol.120, issue.2, pp.403-410, 2010.
DOI : 10.1172/JCI42014

K. Janssens, R. Gershoni-baruch, and N. Guanabens, Mutations in the gene encoding the latency-associated peptide of TGF-??1 cause Camurati-Engelmann disease, Nature Genetics, vol.26, issue.3, pp.273-278, 2000.
DOI : 10.1038/79128

K. Janssens, P. Ten-dijke, S. Ralston, C. Bergmann, V. Hul et al., Transforming Growth Factor-??1 Mutations in Camurati-Engelmann Disease Lead to Increased Signaling by Altering either Activation or Secretion of the Mutant Protein, Journal of Biological Chemistry, vol.267, issue.9, pp.7718-7742, 2003.
DOI : 10.1084/jem.20011521

J. Annes, Y. Chen, J. Munger, and D. Rifkin, -mediated activation of latent TGF-?? requires the latent TGF-?? binding protein-1, The Journal of Cell Biology, vol.269, issue.5, pp.723-757, 2004.
DOI : 10.1073/pnas.87.22.8835

P. Van-der-kraan, B. Davidson, E. Blom, A. Van-den, and W. Berg, TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis, Osteoarthritis and Cartilage, vol.17, issue.12, pp.1539-1584, 2009.
DOI : 10.1016/j.joca.2009.06.008

J. Olivieri, S. Smaldone, and F. Ramirez, Fibrillin assemblies: extracellular determinants of tissue formation and fibrosis, Fibrogenesis & Tissue Repair, vol.3, issue.1, p.24, 2010.
DOI : 10.1186/1755-1536-3-24

M. Kluppel, T. Wight, C. Chan, A. Hinek, and J. Wrana, Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis, Development, vol.132, issue.17, pp.3989-4003, 2005.
DOI : 10.1242/dev.01948

Z. Li, W. Hou, C. Escalante-torres, B. Gelb, and D. Bromme, Collagenase Activity of Cathepsin K Depends on Complex Formation with Chondroitin Sulfate, Journal of Biological Chemistry, vol.280, issue.32, pp.28669-76, 2002.
DOI : 10.1074/jbc.C000278200

I. Grafe, T. Yang, and S. Alexander, Excessive transforming growth factor-?? signaling is a common mechanism in osteogenesis imperfecta, Nature Medicine, vol.144, issue.6, pp.670-675, 2014.
DOI : 10.1016/0076-6879(87)44176-1

E. Neptune, P. Frischmeyer, and D. Arking, Dysregulation of TGF-?? activation contributes to pathogenesis in Marfan syndrome, Nature Genetics, vol.57, issue.3, pp.407-418, 2003.
DOI : 10.1161/01.RES.88.1.37

E. Gallo, D. Loch, and J. Habashi, Angiotensin II???dependent TGF-?? signaling contributes to Loeys-Dietz syndrome vascular pathogenesis, Journal of Clinical Investigation, vol.124, issue.1, pp.448-60, 2014.
DOI : 10.1172/JCI69666DS1

J. Habashi, D. Judge, and T. Holm, Losartan, an AT1 Antagonist, Prevents Aortic Aneurysm in a Mouse Model of Marfan Syndrome, Science, vol.312, issue.5770, pp.117-138, 2006.
DOI : 10.1126/science.1124287

T. Holm, J. Habashi, and J. Doyle, Noncanonical TGF?? Signaling Contributes to Aortic Aneurysm Progression in Marfan Syndrome Mice, Science, vol.218, issue.1, pp.358-61, 2011.
DOI : 10.1002/path.2516

R. Kalluri and Y. Han, Targeting TGF-?? and the Extracellular Matrix in Marfan's Syndrome, Developmental Cell, vol.15, issue.1, pp.1-2, 2008.
DOI : 10.1016/j.devcel.2008.06.005

T. Lund, S. Cathey, and W. Miller, Outcomes after Hematopoietic Stem Cell Transplantation for Children with I-Cell Disease, Biology of Blood and Marrow Transplantation, vol.20, issue.11, pp.1847-51, 2014.
DOI : 10.1016/j.bbmt.2014.06.019