D. N. Louis, The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary, Acta Neuropathologica, vol.45, issue.6, pp.803-823, 2016.
DOI : 10.1038/ng.2611

URL : https://hal.archives-ouvertes.fr/hal-01479018

R. Stupp, Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma, New England Journal of Medicine, vol.352, issue.10, pp.987-96, 2005.
DOI : 10.1056/NEJMoa043330

R. Stupp, Maintenance Therapy With Tumor-Treating Fields Plus Temozolomide vs Temozolomide Alone for Glioblastoma, JAMA, vol.314, issue.23, pp.2535-374, 2015.
DOI : 10.1001/jama.2015.16669

URL : http://jama.jamanetwork.com/data/journals/jama/934761/jpc150007.pdf

K. Seystahl, Therapeutic options in recurrent glioblastoma???An update, Critical Reviews in Oncology/Hematology, vol.99, p.376, 2016.
DOI : 10.1016/j.critrevonc.2016.01.018

J. Zhao, Cancer stem cells and chemoresistance: The smartest survives the raid, Pharmacology & Therapeutics, vol.160, 2016.
DOI : 10.1016/j.pharmthera.2016.02.008

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.380-646, 2011.
DOI : 10.1016/j.cell.2011.02.013

J. Godlewski, MicroRNA Signatures and Molecular Subtypes of Glioblastoma, p.382, 2017.

E. Lages, MicroRNA and Target Protein Patterns Reveal Physiopathological Features of Glioma Subtypes, PLoS ONE, vol.30, issue.9, pp.20600-385, 2011.
DOI : 10.1371/journal.pone.0020600.s009

URL : https://hal.archives-ouvertes.fr/inserm-00734099

M. Piwecka, Comprehensive analysis of microRNA expression profile in malignant glioma tissues, Molecular Oncology, vol.21, issue.Suppl. 3, pp.1324-1364, 2015.
DOI : 10.1038/cdd.2013.167

X. Ye, Identification of microRNAs associated with glioma diagnosis and 388 prognosis, Oncotarget, vol.8, issue.16, pp.26394-26403, 2017.

Z. Shi, MiR-128 inhibits tumor growth and angiogenesis by targeting 390 p70S6K1 Pro-neural miR-128 is a glioma tumor suppressor that 392 targets mitogenic kinases, e32709. 391 12. Papagiannakopoulos, pp.1884-1895, 2012.

Z. N. Shan, 2016) miR128-1 inhibits the growth of glioblastoma multiforme and 394 glioma stem-like cells via targeting BMI1 and E2F3, 2017) MicroRNA-Mediated Dynamic Bidirectional Shift between the 396 Subclasses of Glioblastoma Stem-like Cells, pp.78813-78826

C. Evangelisti, MiR-128 up-regulation inhibits Reelin and DCX expression and reduces neuroblastoma cell motility and invasiveness, The FASEB Journal, vol.23, issue.12, pp.4276-4287, 2009.
DOI : 10.1096/fj.09-134965

URL : https://air.unimi.it/bitstream/2434/70277/2/Evangelisti_2009_FASEB_J.pdf

J. Godlewski, Targeting of the Bmi-1 Oncogene/Stem Cell Renewal Factor by 401, 2008.

A. G. Alvarado, Coordination of self-renewal in glioblastoma by integration of adhesion and microRNA signaling, Neuro-Oncology, vol.4, issue.(2), pp.656-66, 2016.
DOI : 10.1007/s13277-014-2158-8

M. Cioce, Mir 145/143: tumor suppressor, oncogenic microenvironmental factor or ...both?, both? Aging, 2016.
DOI : 10.18632/aging.100965

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4931860/pdf

C. Li, The lincRNA-ROR/miR-145 axis promotes invasion and metastasis in 410 hepatocellular carcinoma via induction of epithelial-mesenchymal transition by targeting ZEB2, p.411, 2017.

P. K. Naoghare, Knock-Down of Argonaute 2 (AGO2) Induces Apoptosis in Myeloid Leukaemia Cells and Inhibits siRNA-Mediated Silencing of Transfected Oncogenes in HEK-293 Cells, Basic & Clinical Pharmacology & Toxicology, vol.17, issue.4, pp.274-82, 2011.
DOI : 10.1101/gad.1064703

M. G. Costales, Small Molecule Inhibition of microRNA-210 Reprograms an 509, 2017.

W. Jiang, Repurposing phenformin for the targeting of glioma stem cells and the 511 treatment of glioblastoma Targeting neuronal activity-regulated neuroligin-3 dependency 513 in high-grade glioma Nature advance online publication, Oncotarget, vol.7, issue.35, pp.56456-56470, 2016.

J. Fu, NPV-LDE-225 (Erismodegib) inhibits epithelial mesenchymal transition and self-renewal of glioblastoma initiating cells by regulating miR-21, miR-128, and miR-200, Neuro-Oncology, vol.3, issue.11, pp.691-706, 0516.
DOI : 10.1371/journal.pone.0003769

M. S. Zaman, The functional significance of microRNA-145 in prostate cancer, p.518, 2010.

T. Liu, Curcumin suppresses proliferation and in vitro invasion of human 520 prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR, Gene, p.521, 2017.

N. V. Klinger and S. Mittal, Therapeutic Potential of Curcumin for the Treatment of 522 Brain Tumors, Oxid Med Cell Longev, pp.9324085-523, 2016.

M. Jinek, A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity, Science, vol.274, issue.45, pp.816-837, 2012.
DOI : 10.1074/jbc.274.45.31896

H. Chang, CRISPR/cas9, a novel genomic tool to knock down microRNA in 526 vitro and in vivo, pp.22312-527, 2016.

Z. H. Chen, Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene, Nature Biotechnology, vol.149, issue.6, pp.543-550, 2017.
DOI : 10.1016/S0002-9440(10)61742-7

O. Meca-cortes, CRISPR/Cas9-Mediated Knockin Application in Cell Therapy: A Non-viral Procedure for Bystander Treatment of Glioma in Mice, Molecular Therapy - Nucleic Acids, vol.8, issue.531, pp.395-403, 2017.
DOI : 10.1016/j.omtn.2017.07.012

M. Hirosawa, Cell-type-specific genome editing with a microRNA-responsive CRISPR???Cas9 switch, Nucleic Acids Research, vol.351, issue.13, pp.118-534, 2017.
DOI : 10.1126/science.aad5227

URL : https://doi.org/10.1093/nar/gkx309

S. Ezzine, RILES, a novel method for temporal analysis of the in vivo regulation 535 of miRNA expression Zika virus has oncolytic activity against glioblastoma stem cells, e192. 536 80. Zhu, p.538, 2013.

L. Li, Targeted Expression of miR-34a Using the T-VISA System Suppresses Breast Cancer Cell Growth and Invasion, Molecular Therapy, vol.20, issue.12, pp.2326-2360, 2012.
DOI : 10.1038/mt.2012.201

S. Ma, Combination of AAV-TRAIL with miR-221-Zip Therapeutic Strategy Overcomes the Resistance to TRAIL Induced Apoptosis in Liver Cancer, Theranostics, vol.7, issue.13, pp.3228-3242, 2017.
DOI : 10.7150/thno.19893

D. Yu, Single-Stranded RNAs Use RNAi to Potently and Allele-Selectively Inhibit Mutant Huntingtin Expression, Cell, vol.150, issue.5, pp.895-908, 2012.
DOI : 10.1016/j.cell.2012.08.002

URL : https://doi.org/10.1016/j.cell.2012.08.002

J. Ariyoshi, Development of Novel Antisense Oligonucleotides for the Functional Regulation of RNA-Induced Silencing Complex (RISC) by Promoting the Release of microRNA from RISC, Bioconjugate Chemistry, vol.26, issue.12, pp.2454-60, 2015.
DOI : 10.1021/acs.bioconjchem.5b00501

L. Meng, Small RNA zippers lock miRNA molecules and block miRNA 549 function in mammalian cells The chemical evolution of oligonucleotide therapies of 551 clinical utility Docosahexaenoic Acid Conjugation Enhances Distribution and 553 Safety of siRNA upon Local Administration in Mouse Brain, Nat Commun Nat Biotechnol Mol Ther Nucleic Acids, vol.8, issue.58, pp.238-248, 2016.

E. Elkayam, siRNA carrying an (E)-vinylphosphonate moiety at the 5?? end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2, Nucleic Acids Research, vol.19, issue.6, pp.3528-3536
DOI : 10.1261/rna.036434.112

D. Paul, A-to-I editing in human miRNAs is enriched in seed sequence, 559 influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme, pp.2466-561, 2017.

N. Degrauwe, The RNA Binding Protein IMP2 Preserves Glioblastoma Stem Cells by Preventing let-7 Target Gene Silencing, Cell Reports, vol.15, issue.8, pp.1634-1681, 2016.
DOI : 10.1016/j.celrep.2016.04.086

URL : https://doi.org/10.1016/j.celrep.2016.04.086

C. L. Esposito, A combined microRNA-based targeted therapeutic approach to eradicate glioblastoma stem-like cells, Journal of Controlled Release, vol.238, pp.43-57, 2016.
DOI : 10.1016/j.jconrel.2016.07.032

URL : http://clok.uclan.ac.uk/16805/1/16805%20Esposito%20Shaw%20Alder.pdf

L. Li, Argonaute 2 Complexes Selectively Protect the Circulating MicroRNAs in Cell-Secreted Microvesicles, PLoS ONE, vol.7, issue.10, pp.46957-567, 2012.
DOI : 10.1371/journal.pone.0046957.s005

J. Wahlgren, Delivery of Small Interfering RNAs to Cells via Exosomes, Methods Mol Biol, vol.1364, pp.105-130, 2016.
DOI : 10.1007/978-1-4939-3112-5_10

T. R. Lunavat, RNAi delivery by exosome-mimetic nanovesicles ??? Implications for targeting c-Myc in cancer, Biomaterials, vol.102, pp.231-239, 2016.
DOI : 10.1016/j.biomaterials.2016.06.024

R. A. Haraszti, Loading of Extracellular Vesicles with Chemically Stabilized 572, 2017.

H. K. Lee, Mesenchymal stem cells deliver synthetic microRNA mimics to 575 glioma cells and glioma stem cells and inhibit their cell migration and self-renewal, Oncotarget, vol.4, issue.2, pp.576-346, 2013.
DOI : 10.18632/oncotarget.868

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712579/pdf

O. Ahmed, Delivery of siRNAs to Cancer Cells via Bacteria, p.578, 2015.
DOI : 10.1007/978-1-4939-1538-5_7

C. E. Ashley, Cell-Specific Delivery of Diverse Cargos by Bacteriophage MS2 Virus-like Particles, ACS Nano, vol.5, issue.7, pp.5729-5774, 2011.
DOI : 10.1021/nn201397z

F. M. Kouri, miR-182 integrates apoptosis, growth, and differentiation programs in glioblastoma, Genes & Development, vol.29, issue.7, pp.732-777, 2015.
DOI : 10.1101/gad.257394.114

URL : http://genesdev.cshlp.org/content/29/7/732.full.pdf

J. Yoo, Bioreducible branched poly(modified nona-arginine) cell-penetrating peptide as a novel gene delivery platform, Journal of Controlled Release, vol.246, pp.142-154, 2017.
DOI : 10.1016/j.jconrel.2016.04.040

Y. Yang, Thermal and magnetic dual-responsive liposomes with a cell-penetrating peptide-siRNA conjugate for enhanced and targeted cancer therapy, Colloids and Surfaces B: Biointerfaces, vol.146, pp.607-622, 2016.
DOI : 10.1016/j.colsurfb.2016.07.002

A. Griveau, Silencing of miR-21 by locked nucleic acid-lipid nanocapsule 589 complexes sensitize human glioblastoma cells to radiation-induced cell death, Int J Pharm, p.590, 2013.

S. K. Tripathi, Linear polyethylenimine-graft-chitosan copolymers as efficient DNA/siRNA delivery vectors in vitro and in vivo, Nanomedicine: Nanotechnology, Biology and Medicine, vol.8, issue.3, pp.337-382, 2011.
DOI : 10.1016/j.nano.2011.06.022

M. Gujrati, Multifunctional pH-Sensitive Amino Lipids for siRNA Delivery, Bioconjugate Chemistry, vol.27, issue.1, pp.19-35, 2016.
DOI : 10.1021/acs.bioconjchem.5b00538

G. Sahay, Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling, Nature Biotechnology, vol.12, issue.7, pp.653-661, 2013.
DOI : 10.1093/bioinformatics/bti551

R. L. Juliano and K. Carver, Cellular uptake and intracellular trafficking of oligonucleotides, Advanced Drug Delivery Reviews, vol.87, pp.35-45, 2015.
DOI : 10.1016/j.addr.2015.04.005

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4504789/pdf

J. Gilleron, Image-based analysis of lipid nanoparticle???mediated siRNA delivery, intracellular trafficking and endosomal escape, Nature Biotechnology, vol.20, issue.7, pp.638-684, 2013.
DOI : 10.1093/nar/gkq568

J. Gilleron, Identification of siRNA delivery enhancers by a chemical library 603 screen, Nucleic Acids Research, p.604, 2015.

Y. J. Yu, Therapeutic bispecific antibodies cross the blood-brain barrier in 605 nonhuman primates, Sci Transl Med, vol.6, issue.261, pp.261-154, 2014.

A. Carpentier, Clinical trial of blood-brain barrier disruption by pulsed 607 ultrasound, Sci Transl Med, vol.8, issue.343, pp.343-345, 2016.

B. Halle, Convection-enhanced delivery of an anti-miR is well-tolerated, preserves anti-miR stability and causes efficient target de-repression: a proof of concept, Journal of Neuro-Oncology, vol.69, issue.1, pp.47-55, 2016.
DOI : 10.1001/archneurol.2011.2910

Z. Khvalevsky and E. , Mutant KRAS is a druggable target for pancreatic cancer, Proceedings of the National Academy of Sciences, vol.497, issue.2, pp.20723-20731, 2013.
DOI : 10.1038/nature12205

G. J. Prud-'homme, Neuropilin-1 is a receptor for extracellular miRNA and 614 AGO2/miRNA complexes and mediates the internalization of miRNAs that modulate cell 615 function, Oncotarget, vol.7, issue.42, pp.68057-68071, 2016.

T. Kang, Synergistic targeting tenascin C and neuropilin-1 for specific penetration of nanoparticles for anti-glioblastoma treatment, Biomaterials, vol.101, pp.60-75, 2016.
DOI : 10.1016/j.biomaterials.2016.05.037

R. Ferreira, Argonaute-2 promotes miR-18a entry in human brain endothelial 619 cells, e000968. 620 117, pp.621-281, 2004.
DOI : 10.1161/jaha.114.000968

URL : http://jaha.ahajournals.org/content/ahaoa/3/3/e000968.full.pdf

J. D. Toscano-garibay and G. Aquino-jarquin, Transcriptional regulation 623 mechanism mediated by miRNA-DNA*DNA triplex structure stabilized by Argonaute, Biochim Biophys Acta, vol.624, issue.11, pp.1839-1079, 2014.
DOI : 10.1016/j.bbagrm.2014.07.016

Z. Wang, The Principles of MiRNA-Masking Antisense Oligonucleotides Technology, Methods Mol Biol, vol.676, pp.43-52, 2011.
DOI : 10.1007/978-1-60761-863-8_3

S. Weil, Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas, Neuro-Oncology, vol.13, issue.2, pp.1316-1326, 2017.
DOI : 10.3892/mmr.2015.4680

X. Hong, Gap junctions modulate glioma invasion by direct transfer of 630 microRNA Miravirsen dosing in chronic hepatitis C patients results in 632 decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment 633, Oncotarget Pharmacol Ther, vol.6, issue.431, pp.15566-77, 2015.

M. Van-der-ree, LO7 : A single subcutaneous dose of 2mg/kg or 4mg/kg of RG-101, a GalNAc-conjugated oligonucleotide with antagonist activity against MIR-122, results in significant viral load reductions in chronic hepatitis C patients, Journal of Hepatology, vol.62, pp.261-637
DOI : 10.1016/S0168-8278(15)30153-7

D. Grimm, The dose can make the poison: lessons learned from adverse in vivo toxicities caused by RNAi overexpression, Silence, vol.2, issue.1, 2011.
DOI : 10.1038/mt.2009.222