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Abstract (91/120 words) 26 

MicroRNAs (miRNAs) are key regulatory elements coded by the genome. A single miRNA can 27 

downregulate expression of multiple genes involved in diverse functions. As cancer is a disease 28 

with multiple gene aberrations, developing novel approaches to identify and modulate miRNA-29 

pathways may result in a breakthrough for cancer treatment. With a special focus on 30 

glioblastoma, this review provides an up-to-date understanding of miRNA biogenesis, role of 31 

miRNA in cancer resistance, essential tools for modulating miRNA expression, emerging list of 32 

clinically promising RNAi delivery systems and how they can be adapted for therapy.  33 

 34 

Keywords: glioblastoma, cancer resistance, RNAi, drug delivery, brain targeting, argonaute, 35 

exosomes, nanoparticles 36 

 37 

  38 
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MicroRNA therapeutics for Glioblastoma 39 

 40 

Glioblastomas (GBM) are aggressive grade IV primary tumours of the central nervous system [1, 41 

2]. Standard therapy consists of maximal surgical resection followed by external radiotherapy 42 

and chemotherapy with temozolomide that confers a median survival of about 15 months [2]. 43 

Tumour-treating fields (TTFields) is the latest improvement in GBM treatment which uses a 44 

non-invasive external device (Optune® transducer-array) to create a low intensity electric field 45 

of intermediate frequency (~200kHz) which interferes with mitosis, hinders cell division and 46 

consequently induces cell death in dividing cells [3]. The combination of TTFields plus 47 

temozolomide after the standard chemoradiotherapy significantly increased the overall median 48 

survival to 20.5 months, with better quality of life [3]. Other treatment options for GBM include 49 

chemotherapy other than temozolomide, immunotherapy and therapies targeting specific 50 

oncogenic pathways, for review see Seystahl et al [4]. All currently available treatments are 51 

palliative, not curative [2, 3]. Therapeutic failure of GBM can be attributed to the sub-optimal 52 

delivery of drugs and aberrant expression of multiple genes resulting in tumour heterogeneity, 53 

aggressive infiltrative behaviour and treatment resistance of GBM cells. It is important to 54 

identify multiple drug targets for developing effective therapies.  55 

MicroRNAs (miRNAs or miRs) are natural RNA interference (RNAi) molecules produced by 56 

the cells (for Biogenesis and Functions of miRNAs, see Box-1 and Figure-1). MiRNAs are 57 

involved in GBM pathophysiology, tumor plasticity, and resistance to therapy, see Figure 2 [5-58 

7]. Differential expression of miRNAs is observed in the tumour mass versus control brain tissue 59 

between glioma subtypes [8, 9], and even between different cell subpopulations of the same 60 

tumour [7]. These differences in miRNA expression can be used as diagnostic and prognostic 61 
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biomarkers [7, 10]. The major therapeutic advantage of miRNAs arises from the fact that a single 62 

miRNA can target multiple genes involved in distinct cellular functions. For example, increasing 63 

the expression of a tumour-suppressor miRNA (ts-miRNA) like miR-128-3p [11-17] or miR-64 

145-5p [18-23] in GBM can block cell proliferation, self-renewal, invasion, metastasis, 65 

angiogenesis and drug resistance by selectively down-regulating the expression of multiple 66 

genes, Figure-2. Similarly, repeated systemic treatment with miR-138 blocks multiple key 67 

immune-checkpoints proteins in T-cells (CTLA-4, PD-1 and FoxP3), resulting in significant T-68 

cell mediated tumour regression and increased survival in orthotropic brain-tumour model 69 

expressing PD-L1 ligand [24]. Conversely, inhibiting the function or blocking the expression of 70 

an oncogenic miRNA (oncomiR) in cancer cells can reactivate multiple tumour-suppressor genes 71 

leading to tumour regression (e.g. miR-21-3p [25] or miR-21-5p [26]) or even to tumour 72 

eradication, as in the case of miR-10b [27]. These examples illustrate that the targeting of 73 

miRNAs in GBM either by inhibition, replacement or modulation of their activity is a promising 74 

therapeutic approach [28, 29], Figure-2. Shea et al reviewed an extensive list of GBM relevant 75 

miRNAs [30]. 76 

The miRNA database (miRBase, version 21) enlists 1881 precursors and 2588 mature human 77 

miRNAs [31], of which several of them are identified preferentially as tumour-suppressor 78 

miRNA (ts-miRs), as oncomiRs, or as both, depending on the cell type and function of miRNAs 79 

in those cells [19, 32]. For example, Fareh et al showed forced expression of miR-302/367 80 

cluster in GBM cells resulted in repression of self-renewal properties and in vivo inhibition of 81 

tumour development [33]. Conversely, Guo et al reported that self-renewal and tumour-82 

promoting properties were enhanced by the expression of miR-302/367 cluster in prostate cancer 83 

cells [34, 35]. On the other hand, blocking oncogenic miR-21 expression in immune cells, 84 
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instead of in tumour cells, might block T-cell activation and the anti-tumour immune response 85 

[36]. Hence, it is important to understand the holistic context of miRNA activity [32] and direct 86 

the miRNA therapeutics towards the target cells to maximize therapeutic success. 87 

Nanomedicines provides essential delivery systems to optimize the biodistribution and activity of 88 

miRNA-modulating drugs [37, 38]. 89 

Here, we review an up-to-date understanding of miRNA biogenesis and functions (Box-1 and 90 

Figure-1), role of miRNA in GBM and treatment resistance (Figure-2), various tools available 91 

for modulating miRNA expression (Figure-1), emerging list of clinically promising RNA 92 

delivery systems and how they can be adopted for brain-tumour treatment (Figure-3).  93 

  94 
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Strategies to Modulate MicroRNAs 95 

MiRNA could be modulated either by affecting its biogenesis or mode of action, see Figure-1b.  96 

 97 

Intervening on microRNA biogenesis 98 

Global reduced levels of mature miRNAs are a common feature of cancer, and is usually 99 

associated with aggressive metastatic phenotypes, drug resistance and poor prognosis [61-63]. 100 

Mutations in p53 are a common occurrence in cancer. Mutant-p53 sequesters cofactors of Drosha 101 

(e.g. p68, p72) and interferes with the nuclear cleavage of certain pri-miRNAs, leading to 102 

epithelial to mesenchymal transition (EMT), cell migration and survival [63]. Hypoxia 103 

downregulates the expression of both Drosha and Dicer and reduces miRNA biogenesis, 104 

resulting in tumour progression and infiltration in ovarian and breast cancer [64]. Targeting 105 

either Hypoxia-inducible factor 1-alpha (HIF1a) or combined blockade of transcription factors 106 

Avian Erythroblastosis Virus E26 Oncogene Homolog-1 (ETS1) and ETS Transcription Factor 107 

(ELK1) rescued miRNA biogenesis and reduced tumour growth in ovarian cancer [64].  108 

Exportin-5 (XPO5) acts as a tumour suppressor by mediating the nucleocytoplasmic export of 109 

pre-miR and increasing the levels of mature miRNA in the cytoplasm [61]. Activation of 110 

Extracellular Signal-Regulated Kinase 2 (ERK) in liver cancer reduces XPO5 activity, resulting 111 

in tumour progression and drug resistance[62]. Inducing XPO5 expression by pharmacologically 112 

blocking ERK restores sensitivity to chemotherapy and reduces tumour progression [61, 62].  113 

Although restoring miRNA biogenesis in cancer is beneficial in many instances, abrogating 114 

microRNA biogenesis may also have beneficial effects. For example, knockdown of argonaute-2 115 

(AGO2) by siRNA in myeloid leukaemia induces cell apoptosis [65]. However, such treatments 116 

may cause several side effects in clinical settings since they can affect the homeostasis of 117 
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miRNA biogenesis in the entire body. Hence, miRNA-biogenesis blocking treatments should 118 

only be used if the if the treatment benefits out-weigh the risks. Conventional chemotherapy act 119 

by damaging the DNA, hence causing a permanent damage to the body. It is possible that these 120 

miRNA-biogenesis blocking drugs could be safer compared to conventional genotoxic drugs. 121 

Similarly, drugs that selectively inhibit the biosynthesis of specific microRNAs can be used. For 122 

example, a synthetic peptide blocks pre-miR-21 [66] and TargapremiR-210 blocks pre-miR-210 123 

biogenesis [67], see Figure 1. Alternatively, chemicals that activate the expression of 124 

microRNAs can also be of use. Phenformin, an anti-diabetic drug, increases the expression of 125 

let-7, miR-124 and miR-137 resulting in the inhibition of GBM stemness and growth [68]. 126 

Silibinin, a plant based flavonoid, treatment upregulated miR-494 in head and neck cancer, 127 

which downregulated A Disintegrin And Metalloprotease Domain 10 (ADAM10) and B 128 

Lymphoma Mo-MLV Insertion Region 1 Homolog (BMI1) resulting in inhibition of tumour 129 

growth and self-renewal properties. Blocking the protease activity of ADAM10, an enzyme 130 

responsible for Neuroligin-3 (NLGL3) secretion, potently inhibits in vivo glioma growth [69]. 131 

Hence, silibinin may be useful in GBM treatment. Erismodegib, a phase III drug for 132 

medulloblastoma, upregulates the tumour suppressor miR-128, upregulates miR-200 family 133 

which suppresses epithelial to mesenchymal transition (EMT), and suppresses the anti-apoptotic 134 

miR-21 in glioma-initiating cells [70]. An epigenetic modifier drug decitabine (5-aza-2ʹ-135 

deoxycytidine) and a polyphenolic compound curcumin upregulate miR-145 expression [21, 71]. 136 

Curcumin also blocks the expression of a long-non-coding RNA, LncRNA-ROR, a competitive 137 

endogenous RNA (ceRNA) that blocks miR-145 activity [72]. Klinger et al points out the 138 

importance and desperate need of clinical trials with curcumin for glioblastoma and other brain 139 

tumours [73]. Taken together, some Food and Drug Administration (FDA)-approved small-140 
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molecule drugs have the ability to control the expression of beneficial miRNAs. Small molecule 141 

drugs usually have better absorption, stability and biodistribution compared to nucleic acid 142 

therapeutics, hence preferably used for miRNA modulation.  143 

 144 

 145 

Gene therapy  146 

Clustered Regularly Interspaced Short Palindromic Repeats / CRISPR-associated 9 147 

(CRISPR/Cas9) Genome editing enables permanent changes in specific locations on the 148 

genome. Cas9 is a bacterial endonuclease guided by a dual-RNA system comprising a CRISPR 149 

RNA (crRNA) and a trans-activating crRNA (tracrRNA). Jinek et al engineered a single guide 150 

RNA (sgRNA) to replace the dual RNA [74]. sgRNA/Cas9 nucleoprotein complex creates 151 

double strand breaks (DSBs) in a specific genome location complimentary to sgRNA and a 152 

“NGG” triple-nucleotide protospacer adjacent motif (PAM) [74]. These DSBs are fixed by one 153 

of the two DNA repair mechanisms, error-prone non-homologues end-joining (NHEJ), or 154 

template-mediated homology directed repair (HDR). NHEJ creates insertion/deletion mutations 155 

(INDEL). Such mutations in the stemloop structure of a specific pri-miRNA disrupt its 156 

biogenesis and this strategy is used for selective knock-out of onco-miRNAs [27, 75]. For 157 

example, ablation of miR-10 expression in GBM caused the death of tumour cells but not of 158 

normal cells [27]. Similarly, a missing gene (e.g. ts-miRNA) can be introduced by harnessing the 159 

HDR mechanism and supplying a DNA template. However, CRISPR/Cas9 mediated gene 160 

insertion is relatively less common due to the challenges associated with the co-delivery of 161 

DNA-template [76, 77]. The limitation of viral-vectors is the random gene insertion into the 162 

genome. For in vitro applications, electroporation can be used for delivering Cas9 encoded 163 
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plasmid DNA and minimize the risk of gene insertion [77]. Hirosawa et al developed miR-Cas9-164 

ON and OFF systems for cell-type specific genome editing controlled by endogenous miRNA 165 

levels [78]. This study also used Cas9 to cause several DSBs using a sgRNA targeting an 166 

abundant repetitive DNA sequence found in the genome (Arthrobacter luteus restriction 167 

endonuclease cleavable region, Alu1)[78].  168 

To develop GBM treatments using genome editing tools, it would be desired to direct the Cas9-169 

expression only in desired set of tissues (e.g. in cancer cells) when using viral or non-viral 170 

vectors. As human miRNA expression profiles and miRNA promotors are mapped, it is possible 171 

to engineer tissue-specific expression of Cas9-gene. For example, if Cas9 expression is not 172 

required in a specific tissue type (e.g. normal brain cells), a miRNA that is abundantly expressed 173 

in that tissue can be identified (e.g. miR-128, a brain enriched miRNA) and its miRNA-target 174 

site can be introduced in the Cas9-gene. This strategy can be multiplexed for different tissue 175 

types by introducing several miRNA target site [78]. Conversely, RNAi-Inducible Luciferase 176 

Expression System (RILES) is a selective gene expression system responding to the presence of 177 

specific miRNAs. This system uses a bacterial transcriptional repressor, Cysteine metabolism 178 

repressor (CymR), to suppress a gene-of-interest under the control of an operator sequence. By 179 

introducing a miRNA target sequence in the CymR-gene, CymR expression can be reduces in a 180 

specific miRNA rich environment, which in-turn leads to the expression of the gene-of-181 

interest[79]. Zika virus has shown glioblastoma stem-like cells (GSC)-specific replication and 182 

oncolytic activity [80]. If the molecular mechanism behind selective viral replication in GSCs are 183 

identified, those strategies also can be used for directing other viral vectors to selectively target 184 

GBM cells. T-VISA-miR-34a plasmid system that overexpresses the encoded miRNA is also 185 

modified to specifically express the miRNA only in the cells that express high levels of hTERT, 186 
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hence targeting cancer cells [81]. This system has a prolonged miRNA activity at the therapeutic 187 

level, one week compared to 2 days for miRNA mimics approach [81]. MicroRNA-sponges are 188 

artificial sequences encoded in a plasmid that potently inhibit miRNA function like the natural 189 

ceRNAs [82].  190 

 191 

Oligonucleotide Therapy 192 

MiRNA replacement therapy aims at increasing the expression of a specific miRNA in a target 193 

cell. This can be achieved by introducing synthetic double stranded RNA molecules called 194 

miRNA mimics with identical sequence as natural miRNAs. Yu et al showed that free 195 

metabolically stabilized single-stranded-RNA (ssRNA) can function like ds-siRNA. When 196 

stereotactically injected into mouse brain ss-RNAs combined with AGO2 and inhibited target 197 

genes without any carrier system [83].  198 

Conversely, anti-miRNA therapy aims to block the expression or inhibit the function of an 199 

oncogenic miRNA (oncomiR). Anti-sense oligonucleotides (ASOs) are ssRNAs that binds to 200 

mature miRNA and compromises its function [84]. ASOs are referred by different terminologies 201 

such as antagomiRs, anti-miRs, anti-microRNA oligonucleotides (AMOs) or Locked Nucleic 202 

Acids (LNA). Small RNA zippers are a new class of ssDNA-LNA designed to block a miRNA 203 

by connecting the 3ʹ-end sequences of a mature miRNA to the 5ʹ-end sequences of the adjacent 204 

miRNA molecule [85]. Most of the clinical trials with synthetic oligonucleotides (ODNs) are 205 

conducted with naked RNA, i.e. without a carrier system. ODNs are chemically modified to 206 

achieve desired properties for RNA-delivery to target cells [83, 86]. Most often, they contain a 207 

mix of chemical modifications optimised for function [83, 86-88]. To be clinically active, these 208 

ODNs must survive endo and exonucleases in the body, avoid immune activation, avoid 209 
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sequestration by the reticuloendothelial system, stay longer in circulation, access its target site 210 

(passive diffusion), be preferentially taken up by the target cells (active targeting), and access the 211 

cytoplasm (site of action) [86]. Additional requirements for effective delivery of miRNA-mimics 212 

includes successful RISC-loading, passenger strand separation, target interaction, translational 213 

suppression, and release [86].  214 

Cancer cells can develop resistance to miRNA replacement therapy. The possible mechanisms 215 

are discussed here. After being released, miRNA mimics might require RNA editing enzymes 216 

like ADAR (Adenosine deaminase acting on RNA) and APOBEC1 (apolipoprotein B 217 

mRNA editing enzyme, catalytic polypeptide-like-1) to function like natural miRNAs [89]. 218 

ADAR2 acts on dsRNA and mediates adenosine-to-inosine (A-to-I) editing, which changes the 219 

miRNA target specificity and is essential for stability and normal functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          220 

of certain miRNAs [89]. ADAR2 is downregulated in GBM resulting in reduced conversion of 221 

A-to-I editing of miRNA[89]. This problem can be overcome if the supplied miR-mimics already 222 

contain inosine at appropriate positions. Some other problems associated with miRNA-resistance 223 

includes the expression of competitive endogenous RNAs (ceRNAs) [72] and competitive 224 

endogenous RNA-binding proteins (ceRBPs) can bind to miRNA-target sites (MRE) preventing 225 

access to RISC and hence block miR-mediated gene-silencing [90]. In a 3D in-vivo setting, gap-226 

junction (connexin) mediated intracellular transport of miRNA [52] could dilute the miRNA 227 

concentration in the target cells, but also could help to spread the gene-silencing activity to 228 

neighbouring cells [52]. All these points must be considered to achieve successful miRNA 229 

function. Chemical modifications are discussed in Table 1 [84, 86-88, 91] and clinical trials are 230 

discussed in Box 1. 231 
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Blood and extracellular matrix contain abundant extracellular miRNA stabilized by exosomes 232 

and argonaute protein complexes and they are biologically active after cellular entry [50, 51, 92] 233 

indicating that chemical modifications can be beneficial but not a requirement to achieve RNAi 234 

effects when combined with RNA-stabilizing nanocarriers derived from both natural and 235 

synthetic sources. 236 

It is very difficult to understand what is being presented and discussed in this entire section. It 237 

needs to be heavily re-written. 238 

 239 

Natural Nanomedicine 240 

Exosomes and microvesicles are naturally secreted miRNA loaded vesicles that act as natural 241 

delivery and signalling systems in cell to cell communication [93]. These vesicles can be charged 242 

with miRNA, either by transfecting large amounts of exogenous miRNA into the packaging cells 243 

or by directly transfecting the exosomes by electroporation or chemical methods [93-95]. Cell 244 

mediated miRNA delivery has been reported where mesenchymal stem cells (MSCs) or 245 

glioblastoma cancer cells were modified ex vivo to over-express certain tumour-suppressor 246 

miRNAs. These modified cells produced exosomes loaded with the specific ts-miRNA. When 247 

these cells were injected in the tumour vicinity, they secreted exosomes loaded with ts-miRNA 248 

and inhibited tumour growth [33].  249 

Argonaute-2 (AGO2) is a the major functional element of miRNA. The evidences showing that 250 

AGO2 can be used for miRNA delivery is discussed in Box-2. 251 

 252 

Bio-mimetic Delivery Systems 253 

 254 
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Bacterial-mediated RNAi delivery (transkingdom RNAi) has also been explored. The microRNA 255 

of interest can be expressed in bacteria through a plasmid encoding its hairpin loop structure as 256 

described for in vitro siRNA delivery [97]. The virus-like particles (VLPs) via bacteriophage 257 

MS2 can deliver a miRNA. MS2 VLPs are biocompatible, biodegradable, stable and the 258 

synthesis is simple [98].  259 

 260 

Synthetic Nanoparticles 261 

Spherical nucleic acids (SNA) consist of a core gold nanoparticle (AuNP) with its surface 262 

densely packed with oligonucleotides attached via thiolate-Au interaction. The passenger strand 263 

bearing a thiol (SH) group can react with gold nanoparticles to deliver miRNA or siRNA. The 264 

guide strand can be separated from the passenger strand inside the cells by the RNAi machinery 265 

[99]. These nanoparticles show high transfection efficiency, low toxicity and ability to cross the 266 

blood brain barrier (BBB) without a targeting ligand [99].  267 

Cell penetrating peptides (CPP) and other cationic peptides can be complexed with nucleic acids 268 

to form highly efficient delivery systems. Introducing a thiol group in the peptide helps to create 269 

a bioreducible polymeric peptide that can be specifically released in the intracellular 270 

environment and deliver both siRNA and plasmid DNA [100]. 271 

A liposome containing siRNA-CPP complexes and magnetic nanoparticles were used where 272 

magnetic field was used to concentrate the nanoparticles at the site tumour and later the release 273 

of siRNA-CPP was triggered using an electric field [101]. This strategy is interesting for 274 

selective release of RNAi molecules using external triggers.  275 
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Lipid nanocapsules (LNCs) have an oily hydrophobic core stabilized by surfactants. 276 

Oligonucleotides like LNAs can be delivered with a cationic peptide grafted on LNC’s surface 277 

[102].   278 

Polyethylenimine (PEI) is a gold standard cationic polymer used in the nucleic acid delivery. Use 279 

in the clinic is limited by toxicity [103]. Toxicity can be overcome by chemically modifying 280 

more toxic primary and secondary amines into less toxic secondary and tertiary amines. High 281 

molecular weight (HMW) and branched cationic polymers show high toxicity while the low 282 

molecular weight (LMW) and linear polymers show poor nucleic acid binding and transfection 283 

efficiency [103]. One way to overcome this is by using hybrid polymers, e.g. linear PEI-chitosan 284 

hybrid nanoparticles show better transfection efficiency and improved safety profiles [103]. 285 

Another way is by cross-linking LMW polymers with bioreducible disulphide linkages. For 286 

example, thiol cross-linked LMW-PEI polyplexes conjugated with brain targeting rabies virus 287 

glycoprotein (RVG) were useful for the delivery of miR-124a [104]. These nanoparticles 288 

displayed low toxicity and brain targeting capabilities.  289 

Endosomal escape and release from nanocarrier are two major factors that impact the efficiency 290 

of synthetic nanocarriers. The polymeric delivery systems can destabilize the late endosomal 291 

(LE) compartment by proton-sponge effect during its acidification (pH 5 – 6) [105]. Therefore, 292 

endosomal escape of polymer-nucleic acid complex should accompany the escape of 293 

oligonucleotides from the polymers for a functional activity. Similarly, the fate of ~70 % of 294 

siRNA delivered by lipid nanoparticles reach late endosomes (LE), packed into exosomes for 295 

exocytosis [106] and the remaining would be degraded after fusion with lysosome [105, 107]. 296 

Only a small fraction (1 – 2%) of the oligonucleotides reach the cytoplasm that account for the 297 

functional activity. This cytoplasmic release was predicted to happen either by direct fusion of 298 
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liposomal delivery systems with cell membrane or destabilization of the endosomal bilayer 299 

causing the oligonucleotides to leak out into the cytoplasm [107, 108]. Hence, strategies that 300 

allow the intra-cellular release of oligonucleotides after internalization should be addressed more 301 

seriously to achieve highly functional delivery systems [109]. 302 

This section needs to be heavily re-written for clarity and grammar. 303 

 304 

Crossing the BBB and Locoregional Delivery 305 

The blood brain barrier (BBB) prevents the access of drugs and nanoparticles from the blood 306 

stream to the brain, and represents a major challenge to deliver therapeutic amounts of drugs to 307 

intracranial tumours. Several strategies have been devised to overcome the BBB including 308 

ligand-mediated transcytosis [110], temporary physical or chemical disruption [111], or 309 

convection enhanced delivery [112]. Yu et al created an optimised bi-specific antibody targeting 310 

human transferrin receptor that crossed the BBB in mice and monkeys, while also targeting an 311 

intra-brain enzyme β-secretase [110]. Optimal affinity between ligand and receptor is an 312 

important factor to increase brain uptake, as it prevents receptor degradation and allows multiple 313 

rounds of transcytosis [110].  In clinical trials, Carpentier et al implanted an ultrasound (US) 314 

transducer in the skull of GBM patients and achieved safe, reversible, loco-regional BBB 315 

opening and observed no dose-limiting toxicities to increasing intensities of ultrasound [111]. 316 

US-mediated BBB opening enabled the crossing of gadolinium contrast agent (1kDa) and 317 

hydrophilic carboplatin (0.3kDa) [111]. As this study indicates that the intensity of ultrasound 318 

can be safely increased further, this technique can also be used to facilitate brain entry of ASOs 319 

(8kDa), miRNAs (~15kDa) or nanoparticles (>100kDa). 320 
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siR-LODER is a PLGA based biodegradable polymeric implant loaded with siRNA polyplexes 321 

that releases siRNA-polyplexes in the local environment for extended period [2 – 5 months] 322 

[113]. A phase I study reported good progress and Silenseed Ltd. is starting a Phase II clinical 323 

trials with siG12D-LODER (siRNA against mutated KRAS oncogene) in combination with 324 

gemcitabine for pancreatic cancer patients (NCT01676259). Such long-term release systems can 325 

be very helpful for loco-regional delivery of RNAi molecules for GBM treatment. 326 

 327 

Concluding Remarks  328 

GBM patients have a median survival of less than two years due to the lacks effective curative 329 

treatments. The importance of miRNA and its therapeutic benefits in GBM are increasingly 330 

documented in pre-clinical studies. Further developments in this field can lead novel treatments 331 

for GBM. MiRNA-modulating strategies can either act as stand-alone therapeutics or be used in 332 

combination with conventional therapies as sensitizing agents. Many of these strategies use 333 

plasmid DNA or oligonucleotides and delivering nucleic acids to cells is an important technical 334 

problem. Simpler delivery strategies are more likely to enter clinical trials, hence naked RNA 335 

delivery is attractive. Chemical modifications on RNAi molecules have improved in vivo 336 

stability of naked RNA, however further improvements in cellular uptake and intracellular 337 

release are needed to expand its applications beyond liver.  Synthetic nanoparticles often show 338 

promising results in in vitro and in vivo, but fail in human applications due issues with stability, 339 

toxicity, targeting and efficacy. Use of patient derived exosomes might be more biocompatible 340 

and safe in clinical applications. The potential of AGO2 to excel as a RNAi delivery system is 341 

high (refs?) [114-116]. If argonaute-mediated miRNA delivery is properly explored, AGO2 can 342 

be a breakthrough for RNAi, like CRISPR-Cas9 is for genome editing. AGO2 will not however 343 
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solve the delivery concerns with ASOs, hence other strategies such as chemical modifications 344 

and nanoparticle mediated RNA delivery are equally important. Such as?? Combining RNAi, 345 

nanomedicine and locoregional delivery can result in effective cancer therapeutics for GBM.  346 

 347 
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Legend - Figure 1: Biogenesis and Modulating Strategies of miRNAs 641 

(a) Canonical Biogenesis of miRNA: (adapted and modified with permission [117]) MiRNA 642 

genes are transcribed by RNA polymerases in the nucleus forming large primary-miRNA (> 500 643 

bases) which harbours one or more stem-loop structures [29]. The RNA-binding protein (Di 644 

George syndrome Critical Region gene 8, DGCR8/Pasha) and a RNAse III endonuclease 645 

(Drosha) recognizes the stemloop structures and releases the stem-loop Precursor miRNA (Pre-646 

miRNA, ~70 nucleotides) [41]. Pre-miRNA is then transported out of the nucleus through 647 

nuclear pore complexes (NPC) by binding to Exportin-5 (XPO5) and Ran-GTPase [42]. The pre-648 

miRNA has two arms (5ʹ and 3ʹ) each might encode an active miRNA sequence named as miR-649 

X-5p (Red strand) or miR-X-3p (Black strand) respectively. Once in the cytoplasm, the pre-650 

miRNA loads into a pre-RISC (RNA induced silencing complex) consisting of Dicer, TAR RNA 651 

binding protein (TRBP), one of the argonautes (AGO1 - AGO4) and chaperones (Heat Shock 652 

Proteins, HSP70/HSP90) [39, 40, 43]. Dicer cleaves the stem-loop structure creating a ~23bp 653 

miRNA duplex which loads into an argonaute (AGO) [39, 40, 43]. Either miR-5p or miR-3p 654 

strand loads into the AGO [26, 44]. Binding of seed sequence (2 – 7 nucleotides at the 5ʹ-end of 655 

the miRNA, highlighted in green) to the 3ʹ-untranslated region (3ʹ-UTR) of the target mRNA 656 

results in the inhibition of protein synthesis either by messenger RNA (mRNA) destabilization 657 

(>75%) and translational repression [46, 47].  658 

(b) Other functions of miRNA and RISC: RISC complex also exerts nuclear functions by 659 

shuttling between the cytoplasm and the nucleus via Exportin 1 and Importin 8 [48, 49, 118],  660 

and possibly also exerts mitochondrial functions [50]. MicroRNA can be secreted from the cell, 661 

either in extracellular vesicles or bound to AGO2 [7, 50, 51], and function as endocrine 662 

signalling molecules.  663 
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(c) MicroRNA Modulation Strategies: Genome editing [27, 75]; Small Molecule miRNA 664 

Inhibitors (e.g. TargapremiR) [67]; MicroRNA mimics and ss-siRNA [83, 86]; Antisense 665 

Oligonucleotides (ASO) [85]; MicroRNA Sponges (Gene Therapy) [82]; MicroRNA Masks 666 

[119]. 667 

(d) Can recombinant-AGO2 with targeting ligands acts as a RNAi delivery system? 668 
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Legend - Figure 2: Role of miRNA in the Hallmarks of Cancer and Treatment Resistance 669 

(a) Role of miRNA in Treatment Resistance: Standard glioblastoma treatment involves radio 670 

and chemotherapy which damage DNA and create double strand breaks (DSBs). Various 671 

resistance mechanisms lead to treatment failure: (1) Efflux pumps reduce intracellular drug 672 

concentration [22]; (2) Detoxifying enzymes inactivate the drug [5]; (3) DNA repair reverses 673 

lethal DSBs and DNA damages; MGMT is a DNA repair enzyme targeted by miR-181d and 674 

miR-409 [60]; (4, 5) Damaged DNA induces cell death signals and stop cell cycle progression. 675 

For detailed list of resistance genes and mechanisms, see review [5]; (6) Tumour-microtubes and 676 

connexin mediated invasion through exchange of resistance factors (e.g. miRNAs) helps cancer 677 

cells to adapt to genotoxic treatments and surgery [120, 121]. 678 

(b) Role of miRNA in other cancer functions: (1) Role of ts-miRNAs (miR-128 [11-17], miR-679 

145 [18-23], miR-7 [54], miR-16 [55]) and oncomiRs (miR-21-5p [25] and miR-21-3p [26]) in 680 

controlling other hallmarks of cancer. (2) Exosomal miRNAs (especially miR-21 and miR-29a) 681 

can directly bind to Toll-like receptors (TLR7 and TLR8) in the endosomal compartment of 682 

macrophages resulting in pro-metastatic inflammation [57];  683 

(c) Intrinsic and Extrinsic Regulation of miRNA function: (1) Intracellular competitive 684 

endogenous RNAs (ceRNAs) and competitive endogenous RNA binding proteins (ceRBPs) can 685 

inhibit ts-miRNA [72, 90]. Lnc-RNA-ROR, a ceRNA inhibiting miR-145 is presented as an 686 

example. Curcumin inhibits Lnc-RNA-ROR and hence restoring miR-145 function; (2) Small 687 

molecule drugs controlling the expression of ts-miRNAs and oncomiRs [21, 67, 68, 70, 72]; 688 
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(d) Role of Argonaute-miRNA complex:  Vascular endothelial cells express neurophilin1 689 

(NRP1) which acts a receptor for AGO2-miRNA complexes [114-116]. Functional significance 690 

of AGO2-miRNA complexes in GBM is yet unknown.   691 

(e)  Legend explaining the symbols. 692 

Abbreviations: EGFR (Epidermal growth factor receptor); PDGFR (Platelet-derived growth 693 

factor receptor); BMI1 (B Lymphoma Mo-MLV Insertion Region 1 Homolog); E2F3 (E2F 694 

Transcription Factor 3); DCX (Doublecortex), RELN (Reelin); OCT4 (Octamer-Binding 695 

Transcription Factor 3); SOX2 [SRY (Sex-Determining Region Y)-Box 2]; KLF4 (Kruppel-Like 696 

Factor 4); JAM-A (a junction adhesion molecule), ZEB2 (Zinc Finger E-Box Binding 697 

Homeobox 2), ABCB1 (ATP Binding Cassette Subfamily B Member 1), HIF-α (hypoxia-698 

inducible factor 1); TRAIL (TNF-related apoptosis-inducing ligand); XIAP (X-linked inhibitor 699 

of apoptosis protein); BCL2 (B-Cell CLL/Lymphoma 2), CDK6 (Cyclin-dependent kinase-6); 700 

PHACTR4 (Phosphatase and actin regulator 4); FASLG (FAS ligand); TLR7 and TLR8 (Toll-701 

like receptor 7 and 8); KDM1B (Lysine Demethylase 1B); Cx43 (Connexin 43); GAP43 702 

(Growth Associated Protein 43). 703 

 704 

  705 
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Legend - Figure-3: RNA nanomedicine based strategies for GBM treatment 706 

Solid GBM tumours are facing two main situations, unresectable tumour and the resection 707 

cavity. Two major modalities of treatment using innovative nanomedicines may impact the 708 

modulation of miRNA contingents and thus GBM outcome: (a) loco-regional treatments and (b) 709 

systemic delivery.  710 

(a) For loco-regional treatment, although intratumoural stereotaxic infusion (a1) is explored, 711 

intrathecal, intranasal and CSF delivery can also be used for infusion of natural (a2) or synthetic 712 

nanomedicine (a3).  713 

(a2) Natural Delivery Systems: Argonaute-2 (AGO-2)-miRNA complex and exosomes are 714 

presented as examples. Pros: Biocompatible and safe. Cons: Delivery and targeting efficiency 715 

needs further improvement. 716 

(a3) Synthetic Delivery Systems: Gold nanoparticles (AuNPs) have a metallic core. The RNA 717 

is usually loaded on the surface using strong thiol-gold interaction (S-Au); Pros: Facile synthesis 718 

and biocompatible. Cons: Require chemical modification as the RNA are exposed to the surface 719 

[99]; Lipid nanocapsules (LNCs) have an oily hydrophobic core. LNC’s surface can be modified 720 

with cationic polymers or peptides which be used for RNA binding. Alternatively, lipoplexes 721 

(cationic lipid+RNA complexes) can be prepared and embedded into its core; Pros: High cellular 722 

uptake. Cons: Low RNA loading capacity and toxicity from surfactants. Chemical conjugates are 723 

chemically modified naked RNA linked to a ligand to facilitate cellular uptake and increase 724 

delivery efficacy; Pros: Simple design. Cons: Optimization needed to reach organs other than 725 

liver. Liposomes can hold the RNA in its shell or in the aqueous core; Pros: High cellular 726 

uptake. Cons: Low endosomal escape. Cationic polymers condense the nucleic acid by 727 
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electrostatic interaction to form nanoparticles. Pros: Can load very high quantities of RNA per 728 

nanoparticle due to ionic condensation. Cons: Toxicity and release of RNA from the polymer 729 

after cellular entry is not clearly understood. The surface of synthetic and natural nanoparticles 730 

can be easily engineered with polyethylene glycol (PEG) and desired ligand.  731 

(a4) Modalities of administration: As in the case of delivery of radiopharmaceticals 732 

{Vanpouille-Box, 2011 #5048}, it is important to reach optimal therapeutic index and to define 733 

therapeutic time windows where the treatment is more efficient. Drug distribution and clearance 734 

information help to decide dose fractionation and schedule of administration of miRNA-735 

nanomedicine {Ezzine, 2013 #567}. The volume of distribution would depend on the mode of 736 

administration (Bolus or CED). (Part of the image adapted from Servier Medical Art, available 737 

under creative commons attributions 3.0). 738 

(a5) Alternatively, long term release implant might be used for sustained release like siRLODER 739 

[113]. 740 

(b) Systemic delivery and crossing the blood-brain barrier (BBB): The brain endothelium 741 

with tight junctions and the surrounding supporting cells form a selective barrier isolating most 742 

of the blood components from accessing the delicate brain tissue. Ultrasound transducers placed 743 

inside the cranium can reversibly disrupt the BBB causing the leakage of blood components into 744 

the brain tissue [111]. This strategy can be used for facilitating the entry of intravenously 745 

injected nanoparticles into the brain tissue. (b2) Nanoparticles conjugated with anti-transferrin 746 

antibodies can enter the brain tissue by transcytosis through the endothelial cells [110]. Pink dots 747 

represent nanoparticles without any ligand on its surface, while the Green dots represent 748 

transferrin-conjugated nanoparticles. 749 
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Box 1: Biogenesis and functions of miRNAs 751 

The biogenesis and functions of human miRNAs are represented in Figure 1 [39, 40]. MiRNA 752 

genes are transcribed mainly from the nuclear genome (Primary-miRNA transcript, pri-miR) 753 

[29], processed and transported out of the nucleus (Stem-loop structured Precursor-miRNA, pre-754 

miR) [41, 42], trimmed in the cytoplasm (Duplex miRNA, miR-5p/miR-3p) [43] and loaded onto 755 

argonaute proteins to form the RISC complex (single-stranded Mature miRNA). Either or both 756 

miRNA-strands can be loaded onto individual RISC complexes [26, 44]. MiRNA-guided RISC 757 

binds to target messenger-RNAs (primarily in the 3ʹ-untranslated region, at specific sites called 758 

miRNA recognition elements (MREs)) and blocks protein expression by mRNA destabilization 759 

(~80%) and repressing translation (~20%) [45-47].  The RISC complex also exerts miRNA-760 

mediated gene-silencing in the nucleus [48, 49] and mitochondria [50]. MiRNAs can also 761 

function like endocrine or paracrine signalling molecules as they can be transported to adjacent 762 

cells via connexins [52] or secreted from the cell, either in extracellular vesicles (EVs) or bound 763 

to argonaute proteins (e.g. AGO2) [7, 50, 51].  764 

  765 



33 
 

Box 2: Argonaute as a miRNA Delivery System 766 

Extracellular microRNAs are extremely stable and abundantly found in all body fluids, either 767 

bound to argonaute proteins (especially AGO2) or encapsulated in extracellular vesicles (EV) 768 

[50, 51, 92]. Also, AGO2 stabilizes many of the miRNAs in exosomes [92]. EV-associated 769 

circulating miRNA and its role in cell-to-cell communication is increasingly becoming evident 770 

while the functions of AGO2-associated miRNAs are explored very less. Ferreira et al showed 771 

that AGO2 increased miRNA uptake in selective human endothelial cells (EC), derived from 772 

cerebral arteriovenous malformation (AVM), normal and glioma endothelium, without the need 773 

of any transfection agent  [116]. AGO2 also protected miRNAs from degradation after cellular 774 

entry and they were functionally active under both in-vitro and in-vivo conditions [116]. In an 775 

intracranial glioma model, intravenously injected AGO2-miR-18a complexes inhibited 776 

angiogenesis by specific internalization by brain endothelium [116]. The specificity of AGO2-777 

miR uptake strongly indicates the involvement of receptor mediated endocytosis. Prud’homme et 778 

al showed that neuropilin-1 (NRP1) acts as a receptor mediating translocation of free miRNAs 779 

and productive uptake of AGO2-miRNA complexes [114]. NRP1 is highly expressed in vascular 780 

endothelial cells, GBM, and other cancer cells which makes them ideal targets for AGO2-781 

mediated miRNA delivery and might explain the results from Ferreira et al  [114-116]. The 782 

AGO2-mediated RNAi delivery can be expanded to other tissues by attaching ligands on its 783 

surface or producing recombinant AGO2-ligand fusion proteins, see Figure 1. Also, AVM-EC 784 

can be used for AGO-miRNA delivery as it is known to secrete AGO2. Unlike other delivery 785 

systems where the guide strand must be loaded into endogenous AGO to be functional, AGO2-786 

RNAi would be functional once reaching the cytoplasm. Pre-loading exogenous AGO would 787 

minimize the toxicity associated with overloading and sequestering of the endogenous RNAi 788 
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machinery by exogenous RNAi molecules [124]. Also, loading AGO2 with a mature guide 789 

strand eliminates the non-specific effects associated with the passenger strand. AGO2 protects 790 

the RNA from degradation, hence no chemical modifications are necessary; AGO2 is conserved 791 

across all humans and hence the native form of recombinant-AGO2 is probably safe for systemic 792 

delivery. Exploring the endocytosis and endosomal-release pathways of AGO2-miRNA 793 

complexes are needed. With proper exploration, AGO2 can become the solution for RNAi 794 

delivery as it has the potential to overcome several barriers. 795 

 796 

  797 
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Table-1 Clinical Trials with AMOs and MicroRNA mimics  798 

Miravirsen was the first AMO in human clinical trials. Miravirsen development was 799 

discontinued due to poor performance in liver, attributed to the lack of uptake enhancers like 800 

targeting ligands or nanocarriers [122]. RG-101, the next generation GalNAc conjugated 801 

antagomiR against miR-122 is under phase II clinical trial conducted by Regulus Therapeutics 802 

(EudraCT Number: 2015-001535-21). The targeted RG-101 has shown significant reduction in 803 

the viral load with a single subcutaneous injection at 2 and 4 mg/kg of dosing [123]. These 804 

clinical trials emphasise the importance of cellular uptake enhancers is required for the activity 805 

of ODNs in vivo. MRX34 by Mirna Therapeutics is the only miRNA therapeutic in clinical trials 806 

and uses SMARTICLE® lipid based formulation. Phase I clinical trial (NCT01829971) 807 

evaluating maximum tolerated dose was completed. The clinical trial with MRX34 and all other 808 

pipeline R&D programmes were voluntarily discontinued by the Mirna Therapeutics due to 809 

serious immune related adverse events. This clinical study emphasises on the safety of RNA-810 

delivery systems is paramount for achieving success in clinic. 811 

 812 

  813 
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Table – 1 MiRNA and GBM 814 

MiR-128 is highly expressed in normal brain tissue, but down-regulated in GBM [53]. There 815 

exists an inverse correlation between miR-128 expression and grade of glioma [11]. MiR-128 816 

reduces tumour growth (EGFR, PDGFR [12]), stemness (BMI1 and E2F3 [13, 14]), invasion 817 

(DCX, RELN [15]), induces apoptosis [16] and senescence [17]. miR-128 was expressed at low 818 

levels in proneural-GSCs (Glioma Stem-like Cancer cells) and no expression in more aggressive 819 

mesenchymal-GSCs [14]. However, overexpressing miR-128 inhibited tumour growth in all 820 

molecular-subtypes of GSCs [14]. miR-145 is implicated in the reduction of cancer stemness and 821 

invasion abilities by controlling several genes involved in self-renewal (OCT4, SOX2, 822 

NANOG), a junction adhesion molecule (JAM-A) which has the potential to rescue stemness by 823 

the activation of pAKT [18] and EMT (e.g. ZEB2) [19, 20]. It also targets efflux pump, ABCB1 824 

(or P-gp) [22], cell cycle regulators CDK6 and SP1 thereby involved in chemo-sensitization [21]. 825 

Both miR-128 [11] and miR-145 [23] targets p70S6 kinase1, an important down-stream effector 826 

of PI3k/ AKT/ mTOR pathway, highly expressed in glioma and promotes angiogenesis by 827 

activates hypoxia-inducible factor 1 (HIF-α) [11]. MiRNA-7 sensitized GBM to TRAIL-828 

mediated apoptosis (TNF-related apoptosis-inducing ligand) by directly downregulating XIAP 829 

(X-linked inhibitor of apoptosis protein) [54]. MiR-16 inhibited tumour proliferation and 830 

invasion by targeting multiple genes BCL2, CDK6 (Cyclin-dependent kinase-6), cyclin D1, 831 

cyclin E1 and SOX5 at protein level, however seed base-pairing with isolated target sites yielded 832 

only faint but statistically significant downregulation [55]. Similarly, overexpression of 833 

oncomiR-10b did not show any downregulation of predicted targeted genes even at protein-level, 834 

however, the therapeutic impact was evident upon blocking its expression [56]. Abolishing miR-835 

10 expression by genome engineering did not affect normal brain cells while eradicating tumour 836 
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[27]. MiR-21-5p is widely studied oncomiR, while relatively less expressed miR-21-3p 837 

oncogenic role was recently identified [26]. MiR-21-3p targets PHACTR4 (Phosphatase and 838 

actin regulator 4) resulting in rapid cell proliferation and oncogenesis; This study indicates the 839 

importance of studying the miRNA functions without strand-bias [26]. MiR-21-5p decreases 840 

apoptosis by targeting FASLG (FAS ligand) [25]. miRNA-21 and miR-29a loaded exosomes are 841 

released by tumours cells which activates Toll-like receptors (TLR7 and TLR8) in macrophages 842 

causing inflammation and promoting tumour proliferation and metastasis [57]. miR-215 targets 843 

epigenetic regulator KDM1B (Lysine Demethylase 1B) and provides GBM growth adaptation 844 

under hypoxic condition [58], while reintroducing hypoxia suppressed miR-124 induces cell 845 

death by suppressing TEAD1 (Transcriptional Enhancer Factor 1), MAPK14/p38α and SERP1 846 

(Stress-associated Endoplasmic Reticulum Protein 1) [59].  847 

  848 
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Trends Box  849 
 850 

x miRNAs are involved in GBM development and resistance to conventional 851 

therapies. 852 

x MiRNA based drugs and nanomedicine can revolutionize GBM treatment. 853 

x Pioneering clinical trials on miRNA inhibitors and miRNA-mimics show the need 854 

for optimization of delivery systems. 855 

x AGO2 is emerging as a RNAi carrier and can become an important tool for RNAi 856 

delivery. 857 

x Initial success in PLGA-based long-term siRNA delivery systems in solid tumors 858 

provides new hope for developing miRNA-based locoregional treatments for 859 

GBM. 860 

 861 

  862 
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Outstanding Questions Box 863 
 864 

x What is are the most appropriate microRNA networks and pathways to target in 865 
glioblastoma? 866 

 867 
x Can miRNA targeting solve radioresistance and occurrence of the  the yet 868 

inevitable recurrence?  869 
 870 

x How to get successful spatial and temporal delivery of miRNA antagonists or 871 
agonist into glioblastoma cells?  872 

 873 
x How can we achieve long-term delivery of microRNA in the brain? 874 

 875 
x Can therapeutic weapons dedicated to miRNAs greatly benefit from innovative 876 

nanomedicines? Can argonaute become a solution for RNAi delivery? 877 
 878 

 879 
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Table 1 Important Chemical modifications 

 

Location Examples of Chemical Modification References 

5ʹ-end (E)-vinylphosphonate [87] 

3ʹ-end Aptamer conjugates [90] 

3ʹ-end hydrophobic moieties [86] 

backbone phosphorothioate (PS)  [86] 

backbone peptide nucleic acids (PNAs) [85] 

backbone morpholino [85] 

ribose sugar 2ʹ-O-Methyl [86] 

ribose sugar 2ʹ-O-Fluoro  [86] 

ribose sugar 2ʹ-O, 4ʹ-C methylene bridged locked nucleic acids (LNA) [85] 

ribose sugar 2ʹ-O, 4ʹ-C-ethylene-bridged nucleic acids (ENA)  [83] 

 

 

 

 

Table



Trends Box (900 characters, including spaces, required) 
 
 

x miRNAs are involved in GBM development and resistance to conventional therapies. 

x MiRNA based drugs and nanomedicine can revolutionize GBM treatment. 

x Pioneering clinical trials on miRNA inhibitors and miRNA-mimics show the need for optimization of 

delivery systems. 

x AGO2 is emerging as a RNAi carrier and can become an important tool for RNAi delivery. 

x Initial success in PLGA-based long-term siRNA delivery systems in solid tumors provides new hope for 

developing miRNA-based locoregional treatments for GBM. 
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Outstanding Questions Box 
 

x What is are the most appropriate microRNA networks and pathways to target in glioblastoma? 
 

x Can miRNA targeting solve radioresistance and occurrence of the  the yet inevitable recurrence?  
 

x How to get successful spatial and temporal delivery of miRNA antagonists or agonist into glioblastoma 
cells?  

 
x How can we achieve long-term delivery of microRNA in the brain? 

 
x Can therapeutic weapons dedicated to miRNAs greatly benefit from innovative nanomedicines? Can 

argonaute become a solution for RNAi delivery? 
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