E. Zomorodian, B. Eslaminejad, and M. , Mesenchymal Stem Cells as a Potent Cell Source for Bone Regeneration, Stem Cells International, vol.18, issue.4, 2012.
DOI : 10.1359/jbmr.2003.18.4.705

J. I. Dawson and R. O. Oreffo, Bridging the regeneration gap: Stem cells, biomaterials and clinical translation in bone tissue engineering, Archives of Biochemistry and Biophysics, vol.473, issue.2, 2008.
DOI : 10.1016/j.abb.2008.03.024

R. Cancedda, P. Giannoni, and M. Mastrogiacomo, A tissue engineering approach to bone repair in large animal models and in clinical practice, Biomaterials, vol.28, issue.29, p.4240, 2007.
DOI : 10.1016/j.biomaterials.2007.06.023

F. R. Rose and R. O. Oreffo, Bone Tissue Engineering: Hope vs Hype, Biochemical and Biophysical Research Communications, vol.292, issue.1, 2002.
DOI : 10.1006/bbrc.2002.6519

S. P. Bruder, K. H. Kraus, V. M. Goldberg, and S. Kadiyala, The Effect of Implants Loaded with Autologous Mesenchymal Stem Cells on the Healing of Canine Segmental Bone Defects*, The Journal of Bone & Joint Surgery, vol.80, issue.7, 1998.
DOI : 10.2106/00004623-199807000-00007

J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach et al., Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering, Biomaterials, vol.26, issue.23, 2005.
DOI : 10.1016/j.biomaterials.2004.11.057

L. M. Mathieu, T. L. Mueller, P. E. Bourban, D. P. Pioletti, R. Muller et al., Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering, Biomaterials, vol.27, issue.6, p.905, 2006.
DOI : 10.1016/j.biomaterials.2005.07.015

K. G. Marra, J. W. Szem, P. N. Kumta, P. A. Dimilla, and L. Weiss, In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering, Journal of Biomedical Materials Research, vol.50, issue.3, 1999.
DOI : 10.1016/0142-9612(86)90099-2

T. Uemura, J. Dong, Y. Wang, H. Kojima, T. Saito et al., Transplantation of cultured bone cells using combinations of scaffolds and culture techniques, Biomaterials, vol.24, issue.13, p.2277, 2003.
DOI : 10.1016/S0142-9612(03)00039-5

X. B. Yang, H. I. Roach, N. M. Clarke, S. M. Howdle, R. Quirk et al., Human osteoprogenitor growth and differentiation on synthetic biodegradable structures after surface modification, Bone, vol.29, issue.6, 2001.
DOI : 10.1016/S8756-3282(01)00617-2

X. B. Yang, R. S. Bhatnagar, S. Li, and R. O. Oreffo, Biomimetic collagen scaffolds for human bone cell growth and differentiation, Tissue Eng, vol.10, 1148.
DOI : 10.1089/1076327041887871

B. D. Macarthur and R. O. Oreffo, Bridging the gap, Nature, vol.433, issue.7021, 2005.
DOI : 10.1038/433019a

F. G. Lyons, A. A. Al-munajjed, S. M. Kieran, M. E. Toner, C. M. Murphy et al., The healing of bony defects by cell-free collagen-based scaffolds compared to stem cell-seeded tissue engineered constructs, Biomaterials, vol.31, issue.35, 2010.
DOI : 10.1016/j.biomaterials.2010.08.056

G. J. Meijer, J. D. De-bruijn, R. Koole, and C. A. Van-blitterswijk, Cell based bone tissue engineering in jaw defects, Biomaterials, vol.29, issue.21, 2008.
DOI : 10.1016/j.biomaterials.2008.03.012

H. Ohgushi, V. M. Goldberg, and A. Caplan, Repair of bone defects with marrow cells and porous ceramic: Experiments in rats, Acta Orthopaedica Scandinavica, vol.12, issue.171, 1989.
DOI : 10.1177/00220345790580050901

R. M. Nerem and A. Sambanis, Tissue engineering: from biology to biological substitutes, Tissue Eng, vol.1, issue.3, 1995.
DOI : 10.1089/ten.1995.1.3

J. Schantz, D. W. Hutmacher, C. X. Lam, M. Brinkmann, K. M. Wong et al., Repair of calvarial defects with customised tissue-engineered bone grafts II. Evaluation of cellular efficiency and efficacy in vivo, Tissue Eng, vol.9, issue.127, 2003.

K. M. Dupont, K. Sharma, H. Y. Stevens, J. D. Boerckel, A. J. García et al., Human stem cell delivery for treatment of large segmental bone defects, Proceedings of the National Academy of Sciences, vol.81, issue.4, 2010.
DOI : 10.1002/jbm.a.31142

B. Rai, J. L. Lin, Z. X. Lim, R. E. Guldberg, D. W. Hutmacher et al., Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL???TCP scaffolds, Biomaterials, vol.31, issue.31, 2010.
DOI : 10.1016/j.biomaterials.2010.07.001

A. R. Amini, C. T. Laurencin, and S. P. Nukavarapu, Bone Tissue Engineering: Recent Advances and Challenges, Critical Reviews?? in Biomedical Engineering, vol.40, issue.5, 2012.
DOI : 10.1615/CritRevBiomedEng.v40.i5.10

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3766369/pdf

O. 'brien and F. J. , Biomaterials & scaffolds for tissue engineering, 2011.

E. A. Phelps and A. J. Garcia, Update on therapeutic vascularization strategies, Regenerative Medicine, vol.152, issue.1, p.65, 2009.
DOI : 10.1001/jama.295.9.1003

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2644334/pdf

H. C. Ko, B. K. Milthorpe, and C. Mcfarland, Engineering thick tissues?the vascularisation problem, Eur Cells Mater, vol.14, issue.1, 2007.
DOI : 10.22203/ecm.v014a01

L. Krishnan, N. Willett, and R. Guldberg, Vascularization Strategies for Bone Regeneration, Annals of Biomedical Engineering, vol.12, issue.Suppl 2, 2014.
DOI : 10.1016/S1054-8807(03)00089-9

E. Farrell, S. K. Both, K. I. Odorfer, W. Koevoet, N. Kops et al., In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells, BMC Musculoskeletal Disorders, vol.26, issue.35, p.31, 2011.
DOI : 10.1016/j.biomaterials.2005.05.057

E. Farrell, O. P. Van-der-jagt, W. Koevoet, N. Kops, C. J. Van-manen et al., Chondrogenic priming of human bone marrow stromal cells: a better route to bone repair?, Tissue Eng Part C, vol.15, issue.285, 2009.

E. J. Mackie, Y. A. Ahmed, L. Tatarczuch, K. S. Chen, and M. Mirams, Endochondral ossification: How cartilage is converted into bone in the developing skeleton, The International Journal of Biochemistry & Cell Biology, vol.40, issue.1, 2008.
DOI : 10.1016/j.biocel.2007.06.009

L. Mcnamara, Bone as a material?intramembranous ossification, Comprehensive Biomaterials. UK, p.4000, 2011.

H. M. Kronenberg, Developmental regulation of the growth plate, Nature, vol.153, issue.6937, 2003.
DOI : 10.1083/jcb.153.1.87

H. P. Gerber and N. Ferrara, Angiogenesis and Bone Growth, Trends in Cardiovascular Medicine, vol.10, issue.5, p.223, 2000.
DOI : 10.1016/S1050-1738(00)00074-8

C. Vinatier, D. Mrugala, C. Jorgensen, J. Guicheux, and D. L. Noa?«lnoa?noa?«l, Cartilage engineering: a crucial combination of cells, biomaterials and biofactors, Trends in Biotechnology, vol.27, issue.5, 2009.
DOI : 10.1016/j.tibtech.2009.02.005

F. E. Freeman, M. Haugh, and L. Mcnamara, as a bone tissue engineering strategy, Journal of Tissue Engineering and Regenerative Medicine, vol.2012, issue.13, pp.250-262, 2016.
DOI : 10.1155/2012/980353

F. E. Freeman, A. B. Allen, H. Y. Stevens, R. E. Guldberg, and L. M. Mcnamara, Effects of in vitro endochondral priming and pre-vascularisation of human MSC cellular aggregates in vivo, Stem Cell Research & Therapy, vol.17, issue.Suppl 4, 2015.
DOI : 10.1007/s00586-008-0745-3

F. E. Freeman, M. G. Haugh, and L. Mcnamara, An in vitro bone tissue regeneration strategy combining chondrogenic and vascular priming enhances the mineralisation potential of MSCs in vitro whilst also allowing for vessel formation, Tissue Eng Part A, vol.21, 1320.

F. E. Freeman, H. Stevens, P. Owens, R. Guldberg, and L. Mcnamara, Osteogenic differentiation of MSCs by mimicking the cellular niche of the endochondral template, Tissue Eng Part A, vol.22, 2016.

A. J. Steward, J. H. Cole, F. S. Ligler, and E. G. Loboa, Mechanical and Vascular Cues Synergistically Enhance Osteogenesis in Human Mesenchymal Stem Cells, Tissue Engineering Part A, vol.22, issue.15-16, 2016.
DOI : 10.1089/ten.tea.2015.0533

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4991610/pdf

D. R. Carter, T. E. Orr, D. P. Fyhrie, and D. J. Schurman, Influences of Mechanical Stress on Prenatal and Postnatal Skeletal Development, Clinical Orthopaedics and Related Research, vol.&NA;, issue.219, pp.237-250, 1987.
DOI : 10.1097/00003086-198706000-00034

D. R. Carter, Mechanical loading history and skeletal biology, Journal of Biomechanics, vol.20, issue.11-12, 1095.
DOI : 10.1016/0021-9290(87)90027-3

N. C. Nowlan, P. Murphy, and P. J. Prendergast, A dynamic pattern of mechanical stimulation promotes ossification in avian embryonic long bones, Journal of Biomechanics, vol.41, issue.2, 2008.
DOI : 10.1016/j.jbiomech.2007.09.031

P. R. Blenman, D. R. Carter, and G. S. Beaupre, Role of mechanical loading in the progressive ossification of a fracture callus, Journal of Orthopaedic Research, vol.37, issue.3, 1989.
DOI : 10.2106/00004623-197759020-00009

D. R. Carter and M. Wong, The role of mechanical loading histories in the development of diarthrodial joints, Journal of Orthopaedic Research, vol.239, issue.6, 1988.
DOI : 10.1007/978-3-642-67138-8

D. Lacroix and P. J. Prendergast, A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading, Journal of Biomechanics, vol.35, issue.9, p.1163, 2002.
DOI : 10.1016/S0021-9290(02)00086-6

H. Isaksson, W. Wilson, C. C. Van-donkelaar, R. Huiskes, and K. Ito, Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing, Journal of Biomechanics, vol.39, issue.8, p.1507, 2006.
DOI : 10.1016/j.jbiomech.2005.01.037

M. Wong, C. , D. Et, and . Al, A theoretical model of endochondral ossification and bone architectural construction in long bone ontogeny, Anatomy and Embryology, vol.181, issue.6, p.1476, 1990.
DOI : 10.1007/BF00174625

D. Lacroix, P. J. Prendergast, G. Li, and D. Marsh, For personal use only. 45 Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing, Downloaded by Disc Inserm from online.liebertpub.com at 12, 2002.

L. E. Claes, C. A. Heigele, C. Neidlinger-wilke, D. Kaspar, W. Seidl et al., Effects of Mechanical Factors on the Fracture Healing Process, Clinical Orthopaedics and Related Research, vol.355, p.132, 1998.
DOI : 10.1097/00003086-199810001-00015

M. Wong, M. Siegrist, and K. Goodwin, Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes, Bone, vol.33, issue.4, 2003.
DOI : 10.1016/S8756-3282(03)00242-4

M. Wong, C. , and D. R. , Theoretical stress analysis of organ culture osteogenesis, Bone, vol.11, issue.2, 1990.
DOI : 10.1016/8756-3282(90)90060-C

A. R. Finger, C. Y. Sargent, K. O. Dulaney, S. H. Bernacki, and E. G. Loboa, Differential Effects on Messenger Ribonucleic Acid Expression by Bone Marrow???Derived Human Mesenchymal Stem Cells Seeded in Agarose Constructs Due to Ramped and Steady Applications of Cyclic Hydrostatic Pressure, Tissue Engineering, vol.13, issue.6, p.1151, 2007.
DOI : 10.1089/ten.2006.0290

R. Ogawa, S. Mizuno, G. F. Murphy, and D. P. Orgill, The Effect of Hydrostatic Pressure on Three-Dimensional Chondroinduction of Human Adipose???Derived Stem Cells, Tissue Engineering Part A, vol.15, issue.10, p.2937, 2009.
DOI : 10.1089/ten.tea.2008.0672

T. Vinardell, R. A. Rolfe, C. T. Buckley, E. G. Meyer, M. Ahearne et al., Hydrostatic pressure acts to stabilise a chondrogenic phenotype in porcine joint tissue derived stem cells, Eur Cells Mater, vol.23, issue.121, 2012.

Z. Luo and B. B. Seedhom, study with special reference to cartilage repair, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol.37, issue.2, 2007.
DOI : 10.1016/S0021-9290(01)00050-1

P. Angele, J. U. Yoo, C. Smith, J. Mansour, K. J. Jepsen et al., Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro, Journal of Orthopaedic Research, vol.80, issue.3, p.451, 2003.
DOI : 10.3181/00379727-200-43410A

D. R. Wagner, D. P. Lindsey, K. W. Li, P. Tummala, S. E. Chandran et al., Hydrostatic Pressure Enhances Chondrogenic Differentiation of Human Bone Marrow Stromal Cells in Osteochondrogenic Medium, Annals of Biomedical Engineering, vol.209, issue.Pt 14, 2008.
DOI : 10.3109/10520297609116684

E. G. Meyer, C. T. Buckley, A. J. Steward, K. , and D. J. , The effect of cyclic hydrostatic pressure on the functional development of cartilaginous tissues engineered using bone marrow derived mesenchymal stem cells, J Mech Behav Biomed Mater, vol.4, 1257.

N. Y. Afoke, P. D. Byers, and W. Hutton, Contact pressures in the human hip joint, J Bone Joint, vol.69, issue.536, 1987.

W. A. Hodge, R. S. Fijan, K. L. Carlson, R. G. Burgess, W. H. Harris et al., Contact pressures in the human hip joint measured in vivo., vivo cartilage deformation after different types of activity and its dependence on physical training status, 1986.
DOI : 10.1073/pnas.83.9.2879

R. L. Waters, B. R. Lunsford, J. Perry, and R. Byrd, Energy-speed relationship of walking: Standard tables, Journal of Orthopaedic Research, vol.58, issue.2, 1988.
DOI : 10.1113/jphysiol.1953.sp004943

S. F. Carroll, C. T. Buckley, K. , and D. J. , Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad, Journal of Biomechanics, vol.47, issue.9, p.2115, 2014.
DOI : 10.1016/j.jbiomech.2013.12.006

M. A. Brennan, A. Renaud, J. Amiaud, M. T. Rojewski, H. Schrezenmeier et al., Pre-clinical studies of bone regeneration with human bone marrow stromal cells and biphasic calcium phosphate, Stem Cell Research & Therapy, vol.5, issue.5, 2014.
DOI : 10.1016/j.biomaterials.2014.08.018

URL : https://hal.archives-ouvertes.fr/inserm-01205389

M. A. Brennan, A. Renaud, A. L. Gamblin, C. D-'arros, S. Nedellec et al., 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds, Biomedical Materials, vol.10, issue.4, p.45019, 2015.
DOI : 10.1088/1748-6041/10/4/045019

M. G. Haugh, E. G. Meyer, S. D. Thorpe, T. Vinardell, G. P. Duffy et al., Temporal and Spatial Changes in Cartilage-Matrix-Specific Gene Expression in Mesenchymal Stem Cells in Response to Dynamic Compression, Tissue Engineering Part A, vol.17, issue.23-24, 2011.
DOI : 10.1089/ten.tea.2011.0198

Y. Kim, R. L. Sah, J. H. Doong, and A. J. Grodzinsky, Fluorometric assay of DNA in cartilage explants using Hoechst 33258, Analytical Biochemistry, vol.174, issue.1, 1988.
DOI : 10.1016/0003-2697(88)90532-5

E. Birmingham, G. L. Niebur, P. E. Mchugh, G. Shaw, F. P. Barry et al., Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche, Eur Cells Mater, vol.23, issue.13, 2012.

B. T. Estes, B. O. Diekman, J. M. Gimble, and F. Guilak, Isolation of adipose-derived stem cells and their induction to a chondrogenic phenotype, Nature Protocols, vol.17, issue.7, p.1294, 2010.
DOI : 10.1128/MCB.17.4.2336

C. M. Curtin, G. M. Cunniffe, F. G. Lyons, K. Bessho, G. R. Dickson et al., Innovative collagen nano-hydroxyapatite scaffolds offer a highly efficient nonviral gene delivery platform for stem cell-mediated bone formation, Adv Mater, vol.24, issue.749, 2012.
DOI : 10.1002/adma.201103828

S. D. Thorpe, C. T. Buckley, T. Vinardell, F. J. O-'brien, V. A. Campbell et al., The Response of Bone Marrow-Derived Mesenchymal Stem Cells to Dynamic Compression Following TGF-??3 Induced Chondrogenic Differentiation, Annals of Biomedical Engineering, vol.7, issue.Pt 4, p.2896, 2010.
DOI : 10.2106/00004623-199812000-00004

N. Jaiswal, S. E. Haynesworth, A. I. Caplan, and S. P. Bruder, Osteogenic differentiation of purified, cultureexpanded human mesenchymal stem cells in vitro, J Cell Biochem, vol.64, issue.295, 1997.

C. M. Coleman, E. E. Vaughan, D. C. Browe, E. Mooney, L. Howard et al., Growth Differentiation Factor-5 Enhances In Vitro Mesenchymal Stromal Cell Chondrogenesis and Hypertrophy, Stem Cells and Development, vol.22, issue.13, 1968.
DOI : 10.1089/scd.2012.0282

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3685316/pdf

N. C. Cheng, B. T. Estes, H. A. Awad, and F. Guilak, Chondrogenic Differentiation of Adipose-Derived Adult Stem Cells by a Porous Scaffold Derived from Native Articular Cartilage Extracellular Matrix, Tissue Engineering Part A, vol.15, issue.2, 2009.
DOI : 10.1089/ten.tea.2008.0253

R. L. Mauck, X. Yuan, T. , and R. S. , Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture, Osteoarthritis and Cartilage, vol.14, issue.2, 2006.
DOI : 10.1016/j.joca.2005.09.002

R. L. Mauck, S. B. Nicoll, S. L. Seyhan, G. A. Ateshian, H. et al., Synergistic Action of Growth Factors and Dynamic Loading for Articular Cartilage Tissue Engineering, Tissue Engineering, vol.9, issue.4, 2003.
DOI : 10.1089/107632703768247304

S. C. Mendes, J. M. Tibbe, M. Veenhof, S. Both, F. C. Oner et al., Relation between in vitro and in vivo osteogenic potential of cultured human bone marrow stromal cells, Journal of Materials Science: Materials in Medicine, vol.15, issue.10, p.1123, 2004.
DOI : 10.1023/B:JMSM.0000046394.53153.21

L. M. Mcnamara, Bone as a Material, Comprehensive Biomaterials, p.169, 2011.
DOI : 10.1016/B978-0-08-055294-1.00068-4

F. Barry, R. E. Boynton, B. Liu, M. , and J. M. , Chondrogenic Differentiation of Mesenchymal Stem Cells from Bone Marrow: Differentiation-Dependent Gene Expression of Matrix Components, Experimental Cell Research, vol.268, issue.2, 2001.
DOI : 10.1006/excr.2001.5278

I. Sekiya, J. T. Vuoristo, B. L. Larson, and D. J. Prockop, In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis, Proceedings of the National Academy of Sciences, vol.15, issue.12, 2002.
DOI : 10.1359/jbmr.2000.15.12.2402

K. Pelttari, A. Winter, E. Steck, K. Goetzke, T. Hennig et al., Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice, Arthritis & Rheumatism, vol.423, issue.10, 2006.
DOI : 10.1007/BF02991574

M. B. Mueller, T. , and R. S. , Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells, Arthritis & Rheumatism, vol.7, issue.5, p.1377, 2008.
DOI : 10.1016/S0002-9440(10)63024-6

S. Ichinose, K. Yamagata, I. Sekiya, T. Muneta, and M. Tagami, DETAILED EXAMINATION OF CARTILAGE FORMATION and ENDOCHONDRAL OSSIFICATION USING HUMAN MESENCHYMAL STEM CELLS, Clinical and Experimental Pharmacology and Physiology, vol.35, issue.7, p.561, 2005.
DOI : 10.1177/32.3.6693757

S. Weiss, T. Hennig, R. Bock, E. Steck, and W. Richter, Impact of growth factors and PTHrP on early and late chondrogenic differentiation of human mesenchymal stem cells, Journal of Cellular Physiology, vol.7, issue.84, 2010.
DOI : 10.2106/00004623-200403000-00001

A. Winter, S. Breit, D. Parsch, K. Benz, E. Steck et al., Cartilage-like gene expression in differentiated human stem cell spheroids: A comparison of bone marrow-derived and adipose tissue-derived stromal cells, Arthritis & Rheumatism, vol.15, issue.2, 2003.
DOI : 10.1002/art.10767