S. Schüller, infection, Cellular Microbiology, vol.71, issue.3, pp.521-551, 2009.
DOI : 10.1152/ajpgi.00503.2002

E. Cario and D. K. Podolsky, Differential alteration in intestinal epithelial cell 373 expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease, p.374, 2000.

A. A. Anas, Lung epithelial MyD88 drives early pulmonary clearance of 376, 2016.

L. Janot, Radioresistant cells expressing TLR5 control the respiratory epithelium's innate immune responses to flagellin, European Journal of Immunology, vol.164, issue.6, pp.1587-96, 2009.
DOI : 10.1016/S0002-9440(10)63095-7

S. M. Chabot, Effects of Flagellin on the Functions of Follicle???Associated Epithelium, The Journal of Infectious Diseases, vol.198, issue.6, pp.907-917, 2008.
DOI : 10.1086/591056

F. Sierro, Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells, Proceedings of the National Academy of Sciences, vol.2, issue.4, pp.13722-13729, 2001.
DOI : 10.1038/86373

D. Sichien, Development of conventional dendritic cells: from common bone marrow progenitors to multiple subsets in peripheral tissues, Mucosal Immunology, vol.4, issue.4, pp.831-386, 2017.
DOI : 10.1016/j.immuni.2013.10.004

T. Granot, Dendritic Cells Display Subset and Tissue-Specific Maturation Dynamics over Human Life, Immunity, vol.46, issue.3, pp.504-519, 2017.
DOI : 10.1016/j.immuni.2017.02.019

S. B. Mizel and J. T. Bates, Flagellin as an Adjuvant: Cellular Mechanisms and Potential, The Journal of Immunology, vol.185, issue.10, pp.5677-82, 2010.
DOI : 10.4049/jimmunol.1002156

URL : http://www.jimmunol.org/content/jimmunol/185/10/5677.full.pdf

M. Rumbo, Flagellins as Adjuvants of Vaccines, Immunopotentiators in 392, 2017.
DOI : 10.1016/B978-0-12-804019-5.00007-4

B. He, Intestinal Bacteria Trigger T Cell-Independent, 2007.
DOI : 10.1016/j.immuni.2007.04.014

URL : https://doi.org/10.1016/j.immuni.2007.04.014

R. H. Wilson, The Toll-like receptor 5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens, Nature Medicine, vol.181, issue.11, pp.1705-1715, 2012.
DOI : 10.1016/j.jaci.2007.07.003

J. Shim, Flagellin suppresses experimental asthma by generating regulatory dendritic cells and T cells, Journal of Allergy and Clinical Immunology, vol.137, issue.2, pp.426-461, 2016.
DOI : 10.1016/j.jaci.2015.07.010

S. J. Mcsorley, Bacterial Flagellin Is an Effective Adjuvant for CD4+ T Cells In Vivo, The Journal of Immunology, vol.169, issue.7, pp.3914-3923, 2002.
DOI : 10.4049/jimmunol.169.7.3914

S. Bobat, Soluble flagellin, FliC, induces an Ag-specific Th2 response, yet 404 promotes T-bet-regulated Th1 clearance of Salmonella typhimurium infection, Eur. J, p.405, 2011.

A. Flores-langarica, Soluble flagellin coimmunization attenuates Th1 priming to Salmonella and clearance by modulating dendritic cell activation and cytokine production, European Journal of Immunology, vol.291, issue.8, pp.2299-2311, 2015.
DOI : 10.1038/291238a0

URL : http://onlinelibrary.wiley.com/doi/10.1002/eji.201545564/pdf

A. Didierlaurent, Flagellin Promotes Myeloid Differentiation Factor 88-Dependent Development of Th2-Type Response, The Journal of Immunology, vol.172, issue.11, pp.6922-6952, 2004.
DOI : 10.4049/jimmunol.172.11.6922

T. K. Means, The Toll-Like Receptor 5 Stimulus Bacterial Flagellin Induces Maturation and Chemokine Production in Human Dendritic Cells, The Journal of Immunology, vol.170, issue.10, pp.5165-75, 2003.
DOI : 10.4049/jimmunol.170.10.5165

S. Uematsu, Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5, Nature Immunology, vol.76, issue.7, pp.769-76, 2008.
DOI : 10.4049/jimmunol.173.6.3668

S. Uematsu, Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11c+ lamina propria cells, Nature Immunology, vol.170, issue.8, pp.868-74, 2006.
DOI : 10.4049/jimmunol.170.6.3059

H. Liu, TLR5 mediates CD172??+ intestinal lamina propria dendritic cell induction of Th17 cells, Scientific Reports, vol.207, issue.1, p.22040, 2016.
DOI : 10.1084/jem.20092253

L. Van-maele, Activation of Type 3 Innate Lymphoid Cells and Interleukin 423, 2014.

A. Flores-langarica, Systemic Flagellin Immunization Stimulates Mucosal CD103+ Dendritic Cells and Drives Foxp3+ Regulatory T Cell and IgA Responses in the Mesenteric Lymph Node, The Journal of Immunology, vol.189, issue.12, pp.5745-54, 2012.
DOI : 10.4049/jimmunol.1202283

S. Lee, Dual Immunization with SseB/Flagellin Provides Enhanced 429, 2017.
DOI : 10.4049/jimmunol.1601357

D. N. Taylor, Development of VAX128, a recombinant hemagglutinin (HA) 432 influenza-flagellin fusion vaccine with improved safety and immune response, Vaccine, vol.433, pp.30-5761, 2012.

J. R. Kim, Inclusion of Flagellin during Vaccination against Influenza 435, 2015.

M. Vijay-kumar, TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin, European Journal of Immunology, vol.117, issue.12, pp.3528-3562, 2010.
DOI : 10.4049/jimmunol.178.8.5271

C. J. Sanders, Induction of adaptive immunity by flagellin does not require robust activation of innate immunity, European Journal of Immunology, vol.303, issue.2, pp.359-71, 2009.
DOI : 10.1126/science.1094351

S. M. Atif, CD103???CD11b+ dendritic cells regulate the sensitivity of CD4 T-cell responses to bacterial flagellin, Mucosal Immunology, vol.173, issue.1, pp.68-77, 2014.
DOI : 10.1046/j.1440-1711.1999.00877.x

M. Vijay-kumar, Flagellin Treatment Protects against Chemicals, Bacteria, p.443, 2008.
DOI : 10.4049/jimmunol.180.12.8280

URL : http://www.jimmunol.org/content/jimmunol/180/12/8280.full.pdf

F. Yu, Flagellin Stimulates Protective Lung Mucosal Immunity: Role of Cathelicidin-Related Antimicrobial Peptide, The Journal of Immunology, vol.185, issue.2, pp.1142-1151, 2010.
DOI : 10.4049/jimmunol.1000509

A. K. Zgair, Flagellin Administration Protects Respiratory Tract from Burkholderia cepacia Infection, Journal of Microbiology and Biotechnology, vol.22, issue.7, pp.907-923, 2012.
DOI : 10.4014/jmb.1112.11079

R. Porte, Flagellin-Mediated Protection against Intestinal Yersinia 449 pseudotuberculosis Infection Does Not Require Interleukin-22, Infect. Immun, vol.85, pp.450-00806, 2017.
DOI : 10.1128/iai.00806-16

URL : http://iai.asm.org/content/85/2/e00806-16.full.pdf

M. A. Kinnebrew, Bacterial Flagellin Stimulates Toll-Like Receptor, pp.5-452, 2010.

I. Jarchum, Toll-like receptor 5 stimulation protects mice from acute 455, 2011.
DOI : 10.1128/iai.01196-10

URL : http://iai.asm.org/content/79/4/1498.full.pdf

N. Muñoz, Mucosal administration of flagellin protects mice from 457, 2010.

K. I. Ogushi, Salmonella enteritidis FliC (Flagella Filament Protein) Induces 459, 2001.
DOI : 10.1074/jbc.m011618200

URL : http://www.jbc.org/content/276/32/30521.full.pdf

S. Scharf, Induction of human beta-defensin-2 in pulmonary epithelial cells 461, p.23, 2010.

A. Takahashi, Production of beta-defensin-2 by human colonic epithelial 464 cells induced by Salmonella enteritidis flagella filament structural protein, FEBS Lett, vol.465, issue.508, pp.484-492, 2001.

A. Arby, E. Leopold, M. Michael, G. Florian, and T. E. , Flagellin is the principal inducer of the antimicrobial peptide S100A7c 468 (psoriasin) in human epidermal keratinocytes exposed to Escherichia coli, FASEB J, vol.22, issue.469, pp.2168-76, 2008.

M. S. Hossain, Recombinant TLR5 Agonist CBLB502 Promotes NK Cell-Mediated Anti-CMV Immunity in Mice, PLoS ONE, vol.189, issue.5, pp.96165-475, 2014.
DOI : 10.1371/journal.pone.0096165.s004

URL : https://doi.org/10.1371/journal.pone.0096165

B. Zhang, Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18, Science, vol.8, issue.2, pp.861-866, 2014.
DOI : 10.1038/nprot.2013.092

L. G. Burdelya, An Agonist of Toll-Like Receptor 5 Has Radioprotective, p.478, 2008.

L. G. Burdelya, Central role of liver in anticancer and radioprotective 480 activities of Toll-like receptor 5 agonist, Proc. Natl. Acad. Sci, pp.1857-66, 2013.

L. Sfondrini, Antitumor Activity of the TLR-5 Ligand Flagellin in Mouse Models of Cancer, The Journal of Immunology, vol.176, issue.11, pp.6624-6654, 2006.
DOI : 10.4049/jimmunol.176.11.6624

N. D. Leigh, A Flagellin-Derived Toll-Like Receptor 5 Agonist Stimulates 484, 2014.
DOI : 10.1371/journal.pone.0085587

URL : https://doi.org/10.1371/journal.pone.0085587

D. Geng, TLR5 Ligand-Secreting T Cells Reshape the Tumor Microenvironment and Enhance Antitumor Activity, Cancer Research, vol.75, issue.10, pp.1959-1971, 2015.
DOI : 10.1158/0008-5472.CAN-14-2467

J. H. Zheng, Two-step enhanced cancer immunotherapy with engineered 488, 2017.
DOI : 10.1126/scitranslmed.aak9537

C. Messier-solek, Highly diversified innate receptor systems and new forms of animal immunity, Seminars in Immunology, vol.22, issue.1, pp.39-47, 2010.
DOI : 10.1016/j.smim.2009.11.007

T. Tsujita, Fish soluble Toll-like receptor (TLR)5 amplifies human TLR5 response via physical binding to flagellin, Vaccine, vol.24, issue.12, pp.2193-2202, 2006.
DOI : 10.1016/j.vaccine.2005.11.003

S. A. Smith, Adaptive evolution of Toll-like receptor 5 in domesticated mammals, BMC Evolutionary Biology, vol.12, issue.1, p.122, 2012.
DOI : 10.1093/molbev/msm092

C. G. Voogdt, Reptile Toll-like receptor 5 unveils adaptive evolution of 496 bacterial flagellin recognition, Sci Rep, vol.6, 2016.

K. Schroder and T. C. Bosch, ABSTRACT, mBio, vol.7, issue.6, pp.1-9, 2016.
DOI : 10.1128/mBio.01184-16

D. Chinchilla, A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence, Nature, vol.42, issue.7152, pp.497-500, 2007.
DOI : 10.1038/nature05999

T. R. Hawn, A common dominant TLR5 stop codon polymorphism abolishes 502, 2003.
DOI : 10.1084/jem.20031220

URL : http://jem.rupress.org/content/jem/198/10/1563.full.pdf

M. Crispo, Transgenic mouse model harboring the transcriptional fusion 505, 2013.
DOI : 10.1371/journal.pone.0078447

URL : https://doi.org/10.1371/journal.pone.0078447

T. R. Hawn, Toll-like receptor polymorphisms and susceptibility to urinary, p.25, 2009.

S. R. Grossman, Identifying Recent Adaptations in Large-Scale Genomic Data, Cell, vol.152, issue.4, pp.703-716, 2013.
DOI : 10.1016/j.cell.2013.01.035

URL : https://doi.org/10.1016/j.cell.2013.01.035

N. K. Meena, Association of TLR5 Gene Polymorphisms in Ulcerative Colitis 511, 2015.

T. R. Hawn, A stop codon polymorphism of Toll-like receptor 5 is associated with resistance to systemic lupus erythematosus, Proceedings of the National Academy of Sciences, vol.288, issue.9, pp.10593-10600, 2005.
DOI : 10.1172/JCI200420295

A. T. Gewirtz, Dominant-negative TLR5 polymorphism reduces adaptive 516 immune response to flagellin and negatively associates with Crohn's disease, AJP, vol.517, 2006.
DOI : 10.1152/ajpgi.00544.2005

URL : http://ajpgi.physiology.org/content/ajpgi/290/6/G1157.full.pdf

M. Vijay-kumar, Deletion of TLR5 results in spontaneous colitis in mice, Journal of Clinical Investigation, p.519, 2007.
DOI : 10.1172/JCI33084

B. Chassaing, Intestinal Epithelial Cell Toll-like Receptor 5 Regulates the 521, 2014.

V. Singh, Microbiota-Dependent Hepatic Lipogenesis Mediated, 2015.
DOI : 10.1007/978-3-319-25065-6_9

L. Etienne-mesmin, Hepatocyte Toll-Like Receptor 5 Promotes Bacterial 527, 2016.

R. Okumura, Lypd8 promotes the segregation of flagellated microbiota and 530, 2016.

J. Z. Oh, TLR5-Mediated Sensing of Gut Microbiota Is Necessary for Antibody Responses to Seasonal Influenza Vaccination, Immunity, vol.41, issue.3, pp.478-92, 2014.
DOI : 10.1016/j.immuni.2014.08.009

T. C. Cullender, Innate and Adaptive Immunity Interact to Quench Microbiome Flagellar Motility in the Gut, Cell Host & Microbe, vol.14, issue.5, pp.571-81, 2013.
DOI : 10.1016/j.chom.2013.10.009

J. Kortmann, Cutting Edge: Inflammasome Activation in Primary Human 538, 2015.
DOI : 10.4049/jimmunol.1403100

URL : http://www.jimmunol.org/content/jimmunol/195/3/815.full.pdf

K. Lin, Carboxyl-terminal fusion of E7 into Flagellin shifts TLR5 activation to NLRC4/NAIP5 activation and induces TLR5-independent anti-tumor immunity, Scientific Reports, vol.10, issue.1, p.24199, 2016.
DOI : 10.1016/j.ymthe.2004.05.015