J. D. Reveille, J. P. Witter, and M. H. Weisman, Prevalence of axial spondylarthritis in the United States: Estimates from a cross-sectional survey, Arthritis Care & Research, vol.341, issue.6, pp.905-910, 2012.
DOI : 10.1097/MAJ.0b013e31820f8c83

F. Costantino, Prevalence of spondyloarthritis in reference to HLA-B27 in the French population: results of the GAZEL cohort, Annals of the Rheumatic Diseases, vol.81, issue.4, pp.689-693, 2015.
DOI : 10.1016/0007-0971(87)90132-X

E. Lubberts, The IL-23-IL-17 axis in inflammatory arthritis, Nat. Rev. Rheumatol, vol.11, issue.562, 2015.

J. Braun, X. Baraliakos, and U. Kiltz, Secukinumab (AIN457) in the treatment of ankylosing spondylitis, Expert Opinion on Biological Therapy, vol.29, issue.9, pp.711-722, 2016.
DOI : 10.1185/03007995.2014.969368

J. Sieper, Secukinumab efficacy in anti-TNF-naive and anti-TNF-experienced subjects with active ankylosing spondylitis: results from the MEASURE 2 Study, Annals of the Rheumatic Diseases, vol.62, issue.3, 2016.
DOI : 10.1136/annrheumdis-2016-210023

S. J. Pedersen, Radiographic progression is associated with resolution of systemic inflammation in patients with axial spondylarthritis treated with tumor necrosis factor ?? inhibitors: A study of radiographic progression, inflammation on magnetic resonance imaging, and c, Arthritis & Rheumatism, vol.17, issue.Suppl 3, pp.3789-3800, 2011.
DOI : 10.1158/1055-9965.EPI-07-2766

W. L. Holland and S. A. , Manipulation of Sphingolipid Metabolism, Endocrine Reviews, vol.29, issue.4, pp.381-402, 2008.
DOI : 10.1210/er.2007-0025

M. Maceyka, Sphingosine-1-phosphate signaling and its role in disease, Trends in Cell Biology, vol.22, issue.1, pp.50-60, 2012.
DOI : 10.1016/j.tcb.2011.09.003

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253987/pdf

C. R. Gault, L. M. Obeid, and Y. A. Hannun, An Overview of Sphingolipid Metabolism: From Synthesis to Breakdown, Adv. Exp. Med. Biol, pp.688-689, 2010.
DOI : 10.1007/978-1-4419-6741-1_1

S. Fukuhara, The sphingosine-1-phosphate transporter Spns2 expressed on endothelial cells regulates lymphocyte trafficking in mice, Journal of Clinical Investigation, vol.122, issue.4, pp.1416-1426, 2012.
DOI : 10.1172/JCI60746DS1

M. Nagahashi, Spns2, a transporter of phosphorylated sphingoid bases, regulates their blood and lymph levels, and the lymphatic network, The FASEB Journal, vol.27, issue.3, pp.1001-1011, 2013.
DOI : 10.1096/fj.12-219618

A. Kihara, Sphingosine 1-phosphate is a key metabolite linking sphingolipids to glycerophospholipids, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1841, issue.5, pp.766-772, 2014.
DOI : 10.1016/j.bbalip.2013.08.014

S. M. Pitson, Regulation of sphingosine kinase and sphingolipid signaling, Trends in Biochemical Sciences, vol.36, issue.2, pp.97-107, 2011.
DOI : 10.1016/j.tibs.2010.08.001

O. Cuvillier, Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate, Nature, vol.381, issue.6585, pp.800-803, 1996.
DOI : 10.1038/381800a0

S. Spiegel and S. Milstien, Sphingosine-1-phosphate: an enigmatic signalling lipid, Nature Reviews Molecular Cell Biology, vol.4, issue.5, pp.397-407, 2003.
DOI : 10.1038/nrm1103

A. During, G. Penel, and P. Hardouin, Understanding the local actions of lipids in bone physiology, Progress in Lipid Research, vol.59, pp.126-146, 2015.
DOI : 10.1016/j.plipres.2015.06.002

Z. Khavandgar and M. Murshed, Sphingolipid metabolism and its role in the skeletal tissues, Cellular and Molecular Life Sciences, vol.297, issue.1, pp.959-969, 2015.
DOI : 10.1152/ajpendo.91014.2008

J. Ryu, Sphingosine 1-phosphate as a regulator of osteoclast differentiation and osteoclast???osteoblast coupling, The EMBO Journal, vol.280, issue.24, pp.5840-5851, 2006.
DOI : 10.4049/jimmunol.171.1.5

L. Pederson, Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate, Proceedings of the National Academy of Sciences, vol.200, issue.1, pp.20764-20769, 2008.
DOI : 10.1002/jcp.20036

J. Keller, Calcitonin controls bone formation by inhibiting the release of sphingosine 1-phosphate from osteoclasts, Nature Communications, vol.2, p.5215, 2014.
DOI : 10.1002/jbmr.5650020617

M. Ishii and J. Kikuta, Sphingosine-1-phosphate signaling controlling osteoclasts and bone homeostasis, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1831, issue.1, pp.223-227, 2013.
DOI : 10.1016/j.bbalip.2012.06.002

A. Grey, Osteoblastic Cells Express Phospholipid Receptors and Phosphatases and Proliferate in Response to Sphingosine-1-Phosphate, Calcified Tissue International, vol.74, issue.6, pp.542-550, 2004.
DOI : 10.1007/s00223-003-0155-9

R. Dziak, Effects of sphingosine-1-phosphate and lysophosphatidic acid on human osteoblastic cells, Prostaglandins, Leukotrienes and Essential Fatty Acids, vol.68, issue.3, pp.239-249, 2003.
DOI : 10.1016/S0952-3278(02)00277-6

C. Martin, Sphingosine kinase-1 mediates androgen-induced osteoblast cell growth, Biochemical and Biophysical Research Communications, vol.391, issue.1, pp.669-673, 2010.
DOI : 10.1016/j.bbrc.2009.11.118

K. Higashi, Sphingosine-1-phosphate/S1PR2-mediated signaling triggers Smad1/5/8 phosphorylation and thereby induces Runx2 expression in osteoblasts, Bone, vol.93, pp.1-11, 2016.
DOI : 10.1016/j.bone.2016.09.003

C. Sato, Sphingosine 1-phosphate receptor activation enhances BMP-2-induced osteoblast differentiation, Biochemical and Biophysical Research Communications, vol.423, issue.1, pp.200-205, 2012.
DOI : 10.1016/j.bbrc.2012.05.130

E. Matsuzaki, Sphingosine-1-phosphate promotes the nuclear translocation of ??-catenin and thereby induces osteoprotegerin gene expression in osteoblast-like cell lines, Bone, vol.55, issue.2, pp.315-324, 2013.
DOI : 10.1016/j.bone.2013.04.008

Y. Hashimoto, Sphingosine-1-phosphate-enhanced Wnt5a promotes osteogenic differentiation in C3H10T1/2 cells, Cell Biology International, vol.84, issue.12, pp.1129-1136, 2016.
DOI : 10.1007/s00223-008-9189-3

M. K. Kim, Sphingosine-1-phosphate stimulates rat primary chondrocyte proliferation, Biochemical and Biophysical Research Communications, vol.345, issue.1, pp.67-73, 2006.
DOI : 10.1016/j.bbrc.2006.04.042

M. H. Stradner, Sphingosine 1-Phosphate Counteracts the Effects of Interleukin-1?? in Human Chondrocytes, Arthritis & Rheumatism, vol.11, issue.8, pp.2113-2122, 2013.
DOI : 10.2174/1568026611109060726

H. Yuan, Knockdown of sphingosine kinase 1 inhibits the migration and invasion of human rheumatoid arthritis fibroblast-like synoviocytes by down-regulating the PI3K/AKT activation and MMP-2/9 production in vitro, Molecular Biology Reports, vol.43, issue.3, pp.41-5157, 2014.
DOI : 10.1007/s12035-013-8547-y

K. J. French, Discovery and evaluation of inhibitors of human sphingosine kinase, Cancer Res, vol.63, issue.18, pp.5962-5969, 2003.

M. E. Schnute, Modulation of cellular S1P levels with a novel, potent and specific inhibitor of sphingosine kinase-1, Biochemical Journal, vol.48, issue.1, pp.79-88, 2012.
DOI : 10.1021/jo00435a005

K. Liu, Biological Characterization of 3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-2,4-dione (K145) as a Selective Sphingosine Kinase-2 Inhibitor and Anticancer Agent, PLoS ONE, vol.50, issue.2, p.56471, 2013.
DOI : 10.1371/journal.pone.0056471.t001

M. Rudwaleit, The Assessment of SpondyloArthritis international Society classification criteria for peripheral spondyloarthritis and for spondyloarthritis in general, Annals of the Rheumatic Diseases, vol.70, issue.1, pp.25-31, 2011.
DOI : 10.1136/ard.2010.133645

D. Aletaha, 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative, Annals of the Rheumatic Diseases, vol.69, issue.9, pp.1580-1588, 2010.
DOI : 10.1136/ard.2010.138461

URL : https://hal.archives-ouvertes.fr/hal-01557559

C. Sanchez, Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts, Osteoarthritis and Cartilage, vol.17, issue.4, pp.473-481, 2009.
DOI : 10.1016/j.joca.2008.09.007

URL : https://doi.org/10.1016/j.joca.2008.09.007

M. Gosset, Primary culture and phenotyping of murine chondrocytes, Nature Protocols, vol.176, issue.8, pp.1253-1260, 2008.
DOI : 10.1016/S0167-4781(98)00044-X

E. Mallick, Passage and concentration-dependent effects of Indomethacin on tendon derived cells, Journal of Orthopaedic Surgery and Research, vol.4, issue.1, 2009.
DOI : 10.1186/1749-799X-4-9

L. Brizuela, The sphingosine kinase-1 survival pathway is a molecular target for the tumor-suppressive tea and wine polyphenols in prostate cancer, The FASEB Journal, vol.24, issue.10, pp.3882-3894, 2010.
DOI : 10.1096/fj.10-160838

]. L. Brizuela, First Evidence of Sphingosine 1-Phosphate Lyase Protein Expression and Activity Downregulation in Human Neoplasm: Implication for Resistance to Therapeutics in Prostate Cancer, Molecular Cancer Therapeutics, vol.11, issue.9, pp.1841-1851, 2012.
DOI : 10.1158/1535-7163.MCT-12-0227

M. R. Pitman, D. H. Pham, and S. M. Pitson, Isoform-Selective Assays for Sphingosine Kinase Activity, Methods Mol. Biol, vol.874, pp.21-31, 2012.
DOI : 10.1007/978-1-61779-800-9_2

C. Bougault, Wnt5a is expressed in spondyloarthritis and exerts opposite effects on enthesis and bone in murine organ and cell cultures, Translational Research, vol.166, issue.6, 2015.
DOI : 10.1016/j.trsl.2015.06.010

URL : https://hal.archives-ouvertes.fr/hal-01338820

Y. Yatomi, Sphingosine 1-Phosphate, a Bioactive Sphingolipid Abundantly Stored in Platelets, Is a Normal Constituent of Human Plasma and Serum, Journal of Biochemistry, vol.121, issue.5, pp.969-973, 1997.
DOI : 10.1093/oxfordjournals.jbchem.a021681

W. Q. Lai, A. J. Melendez, and B. P. Leung, Role of sphingosine kinase and sphingosine-1-phosphate in inflammatory arthritis, World Journal of Biological Chemistry, vol.1, issue.11, pp.321-326, 2010.
DOI : 10.4331/wjbc.v1.i11.321

W. Q. Lai, Anti-Inflammatory Effects of Sphingosine Kinase Modulation in Inflammatory Arthritis, The Journal of Immunology, vol.181, issue.11, pp.8010-8017, 2008.
DOI : 10.4049/jimmunol.181.11.8010

A. Billich, Basal and induced sphingosine kinase 1 activity in A549 carcinoma cells: function in cell survival and IL-1?? and TNF-?? induced production of inflammatory mediators, Cellular Signalling, vol.17, issue.10, pp.1203-1217, 2005.
DOI : 10.1016/j.cellsig.2004.12.005

S. E. Alvarez, Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2, Nature, vol.20, issue.7301, pp.1084-1088, 2010.
DOI : 10.1074/jbc.M606080200

T. Minashima, The role of ANK interactions with MYBBP1a and SPHK1 in catabolic events of articular chondrocytes, Osteoarthritis and Cartilage, vol.22, issue.6, pp.852-861, 2014.
DOI : 10.1016/j.joca.2014.04.008

B. J. Pettus, The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-??, The FASEB Journal, vol.17, issue.11, pp.1411-1421, 2003.
DOI : 10.1096/fj.02-1038com

M. Kitano, Sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 signaling in rheumatoid synovium: Regulation of synovial proliferation and inflammatory gene expression, Arthritis & Rheumatism, vol.220, issue.3, pp.742-753, 2006.
DOI : 10.1016/S0090-6980(01)00109-5

C. Zhao, Specific and overlapping sphingosine-1-phosphate receptor functions in human synoviocytes: impact of TNF-??, Journal of Lipid Research, vol.162, issue.11, pp.2323-2337, 2008.
DOI : 10.1124/mol.107.038216

F. Berenbaum, Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!), Osteoarthritis and Cartilage, vol.21, issue.1, pp.16-21, 2013.
DOI : 10.1016/j.joca.2012.11.012

URL : https://doi.org/10.1016/j.joca.2012.11.012

L. R. Fitzpatrick, Experimental Osteoarthritis in Rats Is Attenuated by ABC294640, a Selective Inhibitor of Sphingosine Kinase-2, Pharmacology, vol.87, issue.3-4, pp.3-4, 2011.
DOI : 10.1159/000323911

W. Q. Lai, Distinct Roles of Sphingosine Kinase 1 and 2 in Murine Collagen-Induced Arthritis, The Journal of Immunology, vol.183, issue.3, pp.2097-2103, 2009.
DOI : 10.4049/jimmunol.0804376

L. Brizuela, Osteoblast-derived sphingosine 1-phosphate to induce proliferation and confer resistance to therapeutics to bone metastasis-derived prostate cancer cells, Molecular Oncology, vol.8, issue.7, pp.1181-1195, 2014.
DOI : 10.1186/1476-4598-8-12

URL : https://hal.archives-ouvertes.fr/hal-01311018

M. S. Donoviel, Spinster 2, a sphingosine-1-phosphate transporter, plays a critical role in inflammatory and autoimmune diseases, The FASEB Journal, vol.29, issue.12, 2015.
DOI : 10.1096/fj.15-274936