. Quantitative-nanomechanical-mapping, The AFM fluid cell contained 100µL of GTP 386 buffer After imaging in the absence of GTP, GTP solution was added through the inlet of 387 the AFM fluid cell to give a final concentration of ~ 2

C. Barbara, USA) equipped with Nanoscope-8 control software, in Peak-Force 390

. Quantitative-nanomechanics, PF-AFM) mode. We used Si3N4 cantilevers with a nominal 391 spring constant of 150 pN nm -1 and silicon tips with a nominal radius of 2 nm, p.392

S. Bruker and C. Barbara, The actual spring constant of the cantilever was 393 determined using the thermal fluctuation method (29) Images were obtained at a 394 resolution of 512 by 512 pixels at a line scan rate of 1 Hz. In PF-AFM, the sample support 395 is oscillated at a constant rate (2 kHz) and amplitude (15 nm) Monitoring the cantilever 396 deflection in each oscillation cycle allows to obtain a force-distance curve on each pixel 397 of the image. The approach trace was used to control the maximum force The retract trace was used to determine the Young's modulus by fitting the 399, p.398

S. Ferguson and P. Camilli, Dynamin, a membrane-remodelling GTPase, Nature Reviews Molecular Cell Biology, vol.119, 2012.
DOI : 10.1083/jcb.119.4.773

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3519936/pdf

S. Sweitzer and J. Hinshaw, Dynamin Undergoes a GTP-Dependent Conformational Change Causing Vesiculation, Cell, vol.93, issue.6, pp.1021-1029, 1998.
DOI : 10.1016/S0092-8674(00)81207-6

URL : https://doi.org/10.1016/s0092-8674(00)81207-6

D. Danino, K. Moon, and J. Hinshaw, Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin, Journal of Structural Biology, vol.147, issue.3, pp.259-267, 2004.
DOI : 10.1016/j.jsb.2004.04.005

A. Sundborger, A Dynamin Mutant Defines a Superconstricted Prefission State, Cell Reports, vol.8, issue.3, pp.734-742, 2014.
DOI : 10.1016/j.celrep.2014.06.054

URL : https://doi.org/10.1016/j.celrep.2014.06.054

K. Faelber, Crystal structure of nucleotide-free dynamin, Nature, vol.134, issue.7366, pp.477556-560, 2011.
DOI : 10.1063/1.3565032

4. 6. Ford, M. , J. S. Nunnari, and J. , The crystal structure of dynamin, Nature, vol.404, issue.7366, pp.477561-566, 2011.
DOI : 10.1016/S0076-6879(05)04053-X

T. Reubold, Crystal structure of the dynamin tetramer, Nature, vol.7, issue.7569, pp.525404-525412, 2015.
DOI : 10.1242/jcs.108845

J. Chappie, S. Acharya, M. Leonard, S. Schmid, and F. Dyda, G domain 434 dimerization controls dynamin's assembly-stimulated GTPase activity, Nature, vol.435, issue.7297, pp.465435-440, 2010.
DOI : 10.1038/nature09032

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879890/pdf

S. Gao, Structural basis of oligomerization in the stalk region of dynamin-like MxA, Nature, vol.73, issue.7297, pp.502-506, 2010.
DOI : 10.1016/j.jmb.2004.09.026

Y. Chen, P. Zhang, E. Egelman, and J. Hinshaw, The stalk region of dynamin 439 drives the constriction of dynamin tubes, Nat Struct Mol Biol, vol.11, issue.440, pp.574-575, 2004.

P. Zhang and J. Hinshaw, Three-dimensional reconstruction of dynamin in the constricted state, Nature Cell Biology, vol.116, issue.10, pp.922-926, 2001.
DOI : 10.1006/jsbi.1996.0018

J. Mears, P. Ray, and J. Hinshaw, A Corkscrew Model for Dynamin Constriction, Structure, vol.15, issue.10, pp.1190-1202, 2007.
DOI : 10.1016/j.str.2007.08.012

URL : https://doi.org/10.1016/j.str.2007.08.012

J. Chappie, A Pseudoatomic Model of the Dynamin Polymer Identifies a Hydrolysis-Dependent Powerstroke, Cell, vol.147, issue.1, pp.209-222, 2011.
DOI : 10.1016/j.cell.2011.09.003

K. Uyhazi, A. Frost, and P. De-camilli, GTP-dependent twisting of 447 dynamin implicates constriction and tension in membrane fission, Nature, vol.448, issue.7092, pp.441528-531, 2006.

S. Morlot, M. Lenz, J. Prost, J. Joanny, and A. Roux, Deformation of Dynamin Helices Damped by Membrane Friction, Biophysical Journal, vol.99, issue.11, pp.3580-3588, 2010.
DOI : 10.1016/j.bpj.2010.10.015

N. Chiaruttini, Relaxation of Loaded ESCRT-III Spiral Springs Drives 454, 2015.

N. Kodera, D. Yamamoto, R. Ishikawa, and T. Ando, Video imaging of walking myosin V by high-speed atomic force microscopy, Nature, vol.77, issue.7320, pp.72-76, 2010.
DOI : 10.1038/nature09450

K. Takei, V. Slepnev, V. Haucke, and P. De-camilli, Functional partnership 458 between amphiphysin and dynamin in clathrin-mediated endocytosis, Nat Cell, p.459, 1999.
DOI : 10.1038/9004

S. Morlot, Membrane Shape at the Edge of the Dynamin Helix Sets Location and Duration of the Fission Reaction, Cell, vol.151, issue.3, pp.619-629, 2012.
DOI : 10.1016/j.cell.2012.09.017

URL : https://hal.archives-ouvertes.fr/hal-01138988

I. Casuso, F. Rico, and S. Scheuring, A hybrid high-speed atomic 463 force?optical microscope for visualizing single membrane proteins on eukaryotic 464 cells, Nat Commun, vol.4, issue.465, pp.2155-2177, 2013.

M. Stowell, B. Marks, P. Wigge, and H. Mcmahon, Nucleotide-dependent conformational changes in dynamin: evidence fora mechanochemical molecular spring, Nature Cell Biology, vol.8, issue.1, pp.27-32, 1999.
DOI : 10.1091/mbc.8.10.2003

B. Marks, GTPase activity of dynamin and resulting conformation change are essential for endocytosis, Nature, vol.17, issue.6825, pp.231-235, 2001.
DOI : 10.1093/emboj/17.18.5273

B. Antonny, Membrane fission by dynamin: what we know and what we need to know, The EMBO Journal, vol.35, issue.21, pp.2270-2284, 2016.
DOI : 10.15252/embj.201694613

URL : https://hal.archives-ouvertes.fr/hal-01597491

S. Morlot and A. Roux, Mechanics of Dynamin-Mediated Membrane Fission, Annual Review of Biophysics, vol.42, issue.1, 2013.
DOI : 10.1146/annurev-biophys-050511-102247

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4289195/pdf

T. Ando, A high-speed atomic force microscope for studying biological macromolecules, Proceedings of the National Academy of Sciences, vol.10, issue.2, pp.12468-72, 2001.
DOI : 10.1016/S0959-440X(00)00074-9

I. Horcas, : A software for scanning probe microscopy and a tool for nanotechnology, Review of Scientific Instruments, vol.78, issue.1, 2007.
DOI : 10.1038/nmat1297

J. Hutter and J. Bechhoefer, Calibration of atomic???force microscope tips, Review of Scientific Instruments, vol.2, issue.7, pp.1868-1873, 1993.
DOI : 10.1063/1.107024

. Bilayer, During the experiment, GTP was injected twice, 500 and the dynamin helix conformational change monitored as a function of time. White 501 arrowheads point at constriction sites, orange arrowhead at fission sites. b) Another 502 example similar to a), with three consecutive GTP-injections. White arrowheads point at 503 a constriction site, which later became fission sites, p.504

. The-dynamin-helix, Arrows point at turn height reduction consistent with constriction 508 (white), lateral separation of adjacent turns (green), collapse of two turns in one (red), 509 turn enlargement (blue), and fission (yellow). e) Kymograph along the axis of a tubule 510 not treated with GTP. f) Maximum height of F.P.1 and F.P.2 as a function of time in b). g), p.511

. Fig, 2B before (grey) and after (red) GTP-addition. k) Dynamin helix turn angle (with 517 respect to the long tubule axis) before (grey) and after (red) GTP-addition (from movies 518 shown in panels a and b, and another tubule)

. Fig, 3) GTP-induced turn pairing observed on lipid nanorods. a) Molecular 521 interactions between dynamin turns within the helix (yellow arrow) are resolved on a 522