S. Affatato, M. Spinelli, M. Zavalloni, C. Mazzega-fabbro, and M. Viceconti, Tribology and total hip joint replacement: Current concepts in mechanical simulation, Medical Engineering & Physics, vol.30, issue.10, pp.1305-1317, 2008.
DOI : 10.1016/j.medengphy.2008.07.006

K. J. Bozic, S. Kurtz, E. Lau, K. Ong, V. Chiu et al., The Epidemiology of Bearing Surface Usage in Total Hip Arthroplasty in the United States, The Journal of Bone and Joint Surgery-American Volume, vol.91, issue.7, pp.1614-1620, 2009.
DOI : 10.2106/JBJS.H.01220

A. Marshall, M. D. Ries, and W. Paprosky, How prevalent are implant wear and osteolysis, and how has the scope of osteolysis changed since 2000?, Journal of the American Academy of Orthopaedic Surgeons, vol.16, pp.1-6, 2008.
DOI : 10.5435/00124635-200800001-00003

P. E. Purdue, P. Koulouvaris, B. J. Nestor, and T. P. Sculco, The Central Role of Wear Debris in Periprosthetic Osteolysis, HSS Journal, vol.84, issue.2, pp.102-113, 2006.
DOI : 10.5435/00124635-199807000-00001

S. M. Kurtz, E. Lau, K. Ong, K. Zhao, M. Kelly et al., Future Young Patient Demand for Primary and Revision Joint Replacement: National Projections from 2010 to 2030, Clinical Orthopaedics and Related Research??, vol.84, issue.Suppl 2, pp.2606-2612, 2009.
DOI : 10.2106/00004623-200200002-00002

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745453/pdf

M. J. Coathup, J. Blackburn, A. E. Goodship, J. L. Cunningham, T. Smith et al., Role of hydroxyapatite coating in resisting wear particle migration and osteolysis around acetabular components, Biomaterials, vol.26, issue.19, pp.4161-4169, 2005.
DOI : 10.1016/j.biomaterials.2004.10.020

S. B. Goodman, Y. Song, J. Y. Yoo, N. Fox, M. C. Trindade et al., Local infusion of FGF-2 enhances bone ingrowth in rabbit chambers in the presence of polyethylene particles, Journal of Biomedical Materials Research, vol.29, issue.4, pp.454-461, 2003.
DOI : 10.1002/jbm.a.3000

B. Bragg, N. J. Epstein, T. Ma, S. Goodman, and R. L. Smith, Histomorphometric analysis of the intramedullary bone response to titanium particles in wild-type and IL-1R1 knock-out mice: A preliminary study, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.39, issue.2, pp.559-570, 2008.
DOI : 10.1002/jbm.b.30904

T. Ma, Z. Huang, P. Ren, R. Mccally, D. Lindsey et al., An in vivo murine model of continuous intramedullary infusion of polyethylene particles, Biomaterials, vol.29, issue.27, pp.3738-3742, 2008.
DOI : 10.1016/j.biomaterials.2008.05.031

N. Shetty, A. J. Hamer, I. Stockley, R. Eastell, and J. M. Willkinson, Clinical and radiological outcome of total hip replacement five years after pamidronate therapy: A TRIAL EXTENSION, Journal of Bone and Joint Surgery - British Volume, vol.88, issue.10, pp.1309-1315, 2006.
DOI : 10.1302/0301-620X.88B10.17308

K. P. Judman, R. , and G. , Tribological aspects of total hip arthroplasty, European Cells and Materials, vol.1, 2001.

E. Ingham and J. Fisher, The role of macrophages in osteolysis of total joint replacement, Biomaterials, vol.26, issue.11, pp.1271-1286, 2005.
DOI : 10.1016/j.biomaterials.2004.04.035

J. Charnley, The long-term results of low-friction arthroplasty of the hip performed as a primary intervention, J Bone Joint Surg Br, vol.54, pp.61-76, 1972.

E. Gomez-barrena, J. Puertolas, L. Munuera, and Y. T. Konttinen, Update on UHMWPE research From the bench to the bedside, Acta Orthopaedica, vol.7, issue.12, pp.832-840, 2008.
DOI : 10.1021/nl071303v

G. J. Atkins, D. R. Haynes, D. W. Howie, and D. M. Findlay, Role of polyethylene particles in peri-prosthetic osteolysis: A review, World Journal of Orthopedics, vol.2, issue.10, pp.93-101, 2011.
DOI : 10.5312/wjo.v2.i10.93

J. Charnley and A. , Clinical multicenter studies of the wear performance of highly crosslinked remelted polyethylene in THA, Clin. Orthop. Relat. Res, vol.471, pp.393-402

J. J. Jacobs, K. A. Roebuck, M. Archibeck, N. J. Hallab, and T. T. Glant, Osteolysis: Basic Science, Clinical Orthopaedics and Related Research, vol.393, pp.71-77, 2001.
DOI : 10.1097/00003086-200112000-00008

S. B. Goodman, Wear particles, periprosthetic osteolysis and the immune system, Biomaterials, vol.28, issue.34, pp.5044-5048, 2007.
DOI : 10.1016/j.biomaterials.2007.06.035

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2065897/pdf

G. M. Keegan, I. D. Learmonth, C. , and C. P. , A Systematic Comparison of the Actual, Potential, and Theoretical Health Effects of Cobalt and Chromium Exposures from Industry and Surgical Implants, Critical Reviews in Toxicology, vol.89, issue.3, pp.645-674, 2008.
DOI : 10.1302/0301-620X.89B3.18520

C. S. Helm and A. S. Greenwald, The rationale and performance of modularity in total hip arthroplasty, Orthopedics, vol.28, pp.1113-1115, 2005.

N. Fabbri, E. Rustemi, C. Masetti, J. Kreshak, M. Gambarotti et al., Severe osteolysis and soft tissue mass around total hip arthroplasty: Description of four cases and review of the literature with respect to clinico-radiographic and pathologic differential diagnosis, European Journal of Radiology, vol.77, issue.1, pp.43-50, 2011.
DOI : 10.1016/j.ejrad.2010.08.015

A. Gordon, E. Kiss-toth, I. Stockley, R. Eastell, and J. M. Wilkinson, Polymorphisms in the interleukin-1 receptor antagonist and interleukin-6 genes affect risk of osteolysis in patients with total hip arthroplasty, Arthritis & Rheumatism, vol.437, issue.10, pp.3157-3165, 2008.
DOI : 10.1002/art.23863

E. Zolotarevova, G. Entlicher, E. Pavlova, M. Slouf, D. Pokorny et al., Distribution of polyethylene wear particles and bone fragments in periprosthetic tissue around total hip joint replacements, Acta Biomaterialia, vol.6, issue.9, pp.3595-3600, 2010.
DOI : 10.1016/j.actbio.2010.04.010

M. L. Wang, P. F. Sharkey, T. , and R. S. , Particle bioreactivity and wear-mediated osteolysis, The Journal of Arthroplasty, vol.19, issue.8, pp.1028-1038, 2004.
DOI : 10.1016/j.arth.2004.03.024

L. Richards, C. Brown, M. H. Stone, J. Fisher, E. Ingham et al., Identification of nanometre-sized ultra-high molecular weight polyethylene wear particles in samples retrieved in vivo, Journal of Bone and Joint Surgery - British Volume, vol.90, issue.8, pp.1106-1113, 2008.
DOI : 10.1302/0301-620X.90B8.20737

A. J. Rao, E. Gibon, T. Ma, Z. Yao, R. L. Smith et al., Revision joint replacement, wear particles, and macrophage polarization, Acta Biomaterialia, vol.8, issue.7, pp.2815-2823, 2012.
DOI : 10.1016/j.actbio.2012.03.042

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3730834/pdf

D. Chen, Y. Guo, X. Mao, and X. Zhang, Inhibition of p38 Mitogen-Activated Protein Kinase Down-regulates the Inflammatory Osteolysis Response to Titanium Particles in a Murine Osteolysis Model, Inflammation, vol.18, issue.6, pp.1798-1806, 2012.
DOI : 10.2174/187152411794961040

E. Ingham and J. Fisher, Biological reactions to wear debris in total joint replacement, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol.79, issue.2, pp.21-37, 2000.
DOI : 10.1302/0301-620X.79B2.7192

J. B. Matthews, T. R. Green, M. H. Stone, B. M. Wroblewski, J. Fisher et al., Comparison of the response of three human monocytic cell lines to challenge with polyethylene particles of known size and dose, Journal of Materials Science: Materials in Medicine, vol.12, issue.3, pp.249-258, 2001.
DOI : 10.1023/A:1008967200706

J. H. Ingram, M. Stone, J. Fisher, and E. Ingham, The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles, Biomaterials, vol.25, issue.17, pp.3511-3522, 2004.
DOI : 10.1016/j.biomaterials.2003.10.054

H. Fang, Y. Ho, C. Yang, H. Liu, F. Ho et al., Preparation of UHMWPE particles and establishment of inverted macrophage cell model to investigate wear particles induced bioactivites, Journal of Biochemical and Biophysical Methods, vol.68, issue.3, pp.175-187, 2006.
DOI : 10.1016/j.jbbm.2006.05.011

E. Yagil-kelmer, P. Kazmier, M. N. Rahaman, B. S. Bal, R. K. Tessman et al., Comparison of the response of primary human blood monocytes and the U937 human monocytic cell line to two different sizes of alumina ceramic particles, Journal of Orthopaedic Research, vol.38, issue.4, pp.832-838, 2004.
DOI : 10.5435/00124635-199807000-00001

S. Yang, W. Ren, Y. Park, A. Sieving, S. Hsu et al., Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation, Biomaterials, vol.23, issue.17, pp.3535-3543, 2002.
DOI : 10.1016/S0142-9612(02)00032-7

A. S. Shanbhag, J. J. Jacobs, J. Black, J. O. Galante, and T. T. Glant, Macrophage/particle interactions: Effect of size, composition and surface area, Journal of Biomedical Materials Research, vol.96, issue.1, pp.81-90, 1994.
DOI : 10.1520/STP14851S

N. Pal, B. Quah, P. N. Smith, L. L. Gladkis, H. Timmers et al., Nano-osteoimmunology as an important consideration in the design of future implants, Acta Biomaterialia, vol.7, issue.7, pp.2926-2934, 2011.
DOI : 10.1016/j.actbio.2011.04.011

M. Fukata, A. S. Vamadevan, and M. T. Abreu, Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders, Seminars in Immunology, vol.21, issue.4, pp.242-253, 2009.
DOI : 10.1016/j.smim.2009.06.005

C. Nich, A. J. Rao, R. D. Valladares, C. Li, J. E. Christman et al., Role of direct estrogen receptor signaling in wear particle-induced osteolysis, Biomaterials, vol.34, issue.3, pp.641-650, 2013.
DOI : 10.1016/j.biomaterials.2012.10.030

M. S. Caicedo, R. Desai, K. Mcallister, A. Reddy, J. J. Jacobs et al., Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: A novel mechanism for implant debris reactivity, Journal of Orthopaedic Research, vol.27, issue.7, pp.847-854, 2009.
DOI : 10.4049/jimmunol.179.2.1274

N. Cobelli, B. Scharf, G. M. Crisi, J. Hardin, and L. Santambrogio, Mediators of the inflammatory response to joint replacement devices, Nat Rev Rheumatol, vol.7, pp.600-608, 2011.

L. Burton, D. Paget, N. B. Binder, K. Bohnert, B. J. Nestor et al., Orthopedic wear debris mediated inflammatory osteolysis is mediated in part by NALP3 inflammasome activation, Journal of Orthopaedic Research, vol.115, issue.1, pp.73-80, 2013.
DOI : 10.1172/JCI200523394

URL : http://onlinelibrary.wiley.com/doi/10.1002/jor.22190/pdf

K. Lochner, A. Fritsche, A. Jonitz, D. Hansmann, P. Mueller et al., The potential role of human osteoblasts for periprosthetic osteolysis following exposure to wear particles, International Journal of Molecular Medicine, vol.28, pp.1055-1063, 2011.
DOI : 10.3892/ijmm.2011.778

S. Y. Kwon, T. Lin, H. Takei, Q. Ma, D. J. Wood et al., Alterations in the adhesion behavior of osteoblasts by titanium particle loading: inhibition of cell function and gene expression, Biorheology, vol.38, pp.161-183, 2001.

R. Lenz, W. Mittelmeier, D. Hansmann, R. Brem, P. Diehl et al., Response of human osteoblasts exposed to wear particles generated at the interface of total hip stems and bone cement, Journal of Biomedical Materials Research Part A, vol.143, issue.2, pp.370-378, 2009.
DOI : 10.1097/00003086-199807000-00005

A. Sabokbar, O. Kudo, and N. A. Athanasou, Two distinct cellular mechanisms of osteoclast formation and bone resorption in periprosthetic osteolysis, Journal of Orthopaedic Research, vol.83, issue.1, pp.73-80, 2003.
DOI : 10.1007/978-3-642-73855-5_6

J. Mandelin, T. F. Li, M. Liljeström, M. E. Kroon, R. Hanemaaijer et al., Imbalance of RANKL/RANK/OPG system in interface tissue in loosening of total hip replacement, The Journal of Bone and Joint Surgery, vol.85, issue.8, pp.1196-1201, 2003.
DOI : 10.1302/0301-620X.85B8.13311

D. Granchi, G. Ciapetti, I. Amato, S. Pagani, E. Cenni et al., The influence of alumina and ultra-high molecular weight polyethylene particles on osteoblast???osteoclast cooperation, Biomaterials, vol.25, issue.18, pp.4037-4045, 2004.
DOI : 10.1016/j.biomaterials.2003.10.100

H. G. Lee, H. Minematsu, K. O. Kim, A. B. Aydemir, M. J. Shin et al., Actin and ERK1/2-CEBP?? signaling mediates phagocytosis-induced innate immune response of osteoprogenitor cells, Biomaterials, vol.32, issue.35, pp.9197-9206, 2011.
DOI : 10.1016/j.biomaterials.2011.08.059

M. Bostrom, O. Keefe, and R. , What experimental approaches (eg, in vivo, in vitro, tissue retrieval) are effective in investigating the biologic effects of particles?, Journal of the American Academy of Orthopaedic Surgeons, vol.16, pp.63-67, 2008.
DOI : 10.5435/00124635-200800001-00013

A. S. Shanbhag, C. T. Hasselman, R. , and H. E. , The John Charnley Award. Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model, Clin. Orthop. Relat. Res, pp.33-43, 1997.

P. J. Millett, M. J. Allen, and M. P. Bostrom, Effects of Alendronate on Particle-Induced Osteolysis in a Rat Model, The Journal of Bone and Joint Surgery-American Volume, vol.84, issue.2, pp.236-249, 2002.
DOI : 10.2106/00004623-200202000-00011

W. Ren, S. Yang, and P. Wooley, A novel murine model of orthopaedic wear???debris associated osteolysis, Scandinavian Journal of Rheumatology, vol.18, issue.5, pp.349-357, 2004.
DOI : 10.1002/jor.1100180602

S. Yang, H. Yu, W. Gong, B. Wu, L. Mayton et al., Murine model of prosthesis failure for the long-term study of aseptic loosening, Journal of Orthopaedic Research, vol.292, issue.5, pp.603-611, 2007.
DOI : 10.1002/jbm.a.30441

P. H. Wooley, R. Morren, J. Andary, S. Sud, S. Yang et al., Inflammatory responses to orthopaedic biomaterials in the murine air pouch, Biomaterials, vol.23, issue.2, pp.517-526, 2002.
DOI : 10.1016/S0142-9612(01)00134-X

S. B. Goodman, R. C. Chin, and F. P. Magee, Prostaglandin E2 Production by the Membrane Surrounding Loose and Fixated Cemented Tibial Hemiarthroplasties in the Rabbit Knee, Clinical Orthopaedics and Related Research, vol.&NA;, issue.284, pp.283-287, 1992.
DOI : 10.1097/00003086-199211000-00039

M. Spector, S. Shortkroff, H. P. Hsu, N. Lane, C. B. Sledge et al., Tissue changes around loose prostheses. A canine model to investigate the effects of an antiinflammatory agent, Clin. Orthop. Relat. Res, pp.140-152, 1990.

H. Gelb, H. R. Schumacher, J. Cuckler, P. Ducheyne, and D. G. Baker, In vivo inflammatory response to polymethylmethacrylate particulate debris: Effect of size, morphology, and surface area, Journal of Orthopaedic Research, vol.9, issue.1, pp.83-92, 1994.
DOI : 10.1520/STP14859S

E. Gibon, T. Ma, P. Ren, K. Fritton, S. Biswal et al., Selective inhibition of the MCP-1-CCR2 ligand-receptor axis decreases systemic trafficking of macrophages in the presence of UHMWPE particles, Journal of Orthopaedic Research, vol.18, issue.4, pp.547-553, 2012.
DOI : 10.1016/8756-3282(96)00047-6

K. Takahashi, S. Onodera, H. Tohyama, H. J. Kwon, K. Honma et al., In Vivo Imaging of Particle-Induced Inflammation and Osteolysis in the Calvariae of NF?B/Luciferase Transgenic Mice, J Biomed Biotechnol, 2011.

C. Nich, J. Langlois, A. Marchadier, C. Vidal, M. Cohen-solal et al., Oestrogen deficiency modulates particle-induced osteolysis, Arthritis Research & Therapy, vol.13, issue.3, p.100, 2011.
DOI : 10.2152/jmi.55.297

URL : https://hal.archives-ouvertes.fr/inserm-00612683

. St, C. A. Pierre, M. Chan, Y. Iwakura, D. C. Ayers et al., Periprosthetic osteolysis: Characterizing the innate immune response to titanium wearparticles, Journal of Orthopaedic Research, vol.28, pp.1418-1424, 2010.

N. Taki, J. M. Tatro, J. L. Nalepka, D. Togawa, V. M. Goldberg et al., Polyethylene and titanium particles induce osteolysis by similar, lymphocyte-independent, mechanisms, Journal of Orthopaedic Research, vol.11, issue.2, pp.376-383, 2005.
DOI : 10.1016/S0002-9440(10)65266-2

URL : http://onlinelibrary.wiley.com/doi/10.1016/j.orthres.2004.08.023/pdf

P. Ren, A. Irani, Z. Huang, T. Ma, S. Biswal et al., Continuous Infusion of UHMWPE Particles Induces Increased Bone Macrophages and Osteolysis, Clinical Orthopaedics and Related Research??, vol.22, issue.1, pp.113-122, 2011.
DOI : 10.2165/00063030-200822020-00002

W. Ren, B. Wu, X. Peng, J. Hua, H. Hao et al., Implant wear induces inflammation, but not osteoclastic bone resorption, in RANK???/??? mice, Journal of Orthopaedic Research, vol.276, issue.8, pp.1575-1586, 2006.
DOI : 10.1243/0954411971534638

URL : http://onlinelibrary.wiley.com/doi/10.1002/jor.20190/pdf

Y. Nakashima, D. H. Sun, W. J. Maloney, S. B. Goodman, D. J. Schurman et al., Induction of matrix metalloproteinase expression in human macrophages by orthopaedic particulate debris in vitro, The Journal of Bone and Joint Surgery, vol.80, issue.4, pp.694-700, 1998.
DOI : 10.1302/0301-620X.80B4.8374

J. Yao, T. T. Glant, M. W. Lark, K. Mikecz, J. J. Jacobs et al., The potential role of fibroblasts in periprosthetic osteolysis: Fibroblast response to titanium particles, Journal of Bone and Mineral Research, vol.74, issue.9, pp.1417-1427, 1995.
DOI : 10.2106/00004623-199274060-00006

Q. Qi, M. Dai, H. Fan, B. Zhang, and X. Yuan, Inhibitory effect of curcumin on MMP-2 and MMP-9 expression induced by polyethylene wear particles and its mechanism], Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, vol.23, pp.677-682, 2009.

M. D. Kauther, C. Neuerburg, F. Wefelnberg, H. S. Bachmann, R. Schlepper et al., RANKL-associated suppression of particle-induced osteolysis in an aged model of Calcitonin and ??-CGRP deficiency, Biomaterials, vol.34, issue.12, pp.2911-2919, 2013.
DOI : 10.1016/j.biomaterials.2013.01.034

W. Ren, R. Zhang, B. Wu, P. H. Wooley, M. Hawkins et al., Effects of SU5416 and a vascular endothelial growth factor neutralizing antibody on wear debris-induced inflammatory osteolysis in a mouse model, Journal of Inflammation Research, vol.4, pp.29-38, 2011.
DOI : 10.2147/JIR.S16232

P. H. Wooley, R. Morren, J. Andary, S. Sud, S. Yang et al., Inflammatory responses to orthopaedic biomaterials in the murine air pouch, Biomaterials, vol.23, issue.2, pp.517-526, 2002.
DOI : 10.1016/S0142-9612(01)00134-X

K. D. Merkel, J. M. Erdmann, K. P. Mchugh, Y. Abu-amer, F. P. Ross et al., Tumor Necrosis Factor-?? Mediates Orthopedic Implant Osteolysis, The American Journal of Pathology, vol.154, issue.1, pp.203-210, 1999.
DOI : 10.1016/S0002-9440(10)65266-2

E. M. Schwarz, E. B. Benz, A. P. Lu, J. J. Goater, A. V. Mollano et al., Quantitative small-animal surrogate to evaluate drug efficacy in preventing wear debris-induced osteolysis, Journal of Orthopaedic Research, vol.10, issue.6, pp.849-855, 2000.
DOI : 10.1016/S0002-9440(10)65266-2

N. Taki, J. M. Tatro, R. Lowe, V. M. Goldberg, and E. M. Greenfield, Comparison of the roles of IL-1, IL-6, and TNF?? in cell culture and murine models of aseptic loosening, Bone, vol.40, issue.5, pp.1276-1283, 2007.
DOI : 10.1016/j.bone.2006.12.053

E. E. Carmody, E. M. Schwarz, J. E. Puzas, R. N. Rosier, O. Keefe et al., Viral interleukin-10 gene inhibition of inflammation, osteoclastogenesis, and bone resorption in response to titanium particles, Arthritis & Rheumatism, vol.154, issue.5, pp.1298-1308, 2002.
DOI : 10.4049/jimmunol.164.4.2131

X. Zhang, S. G. Morham, R. Langenbach, D. A. Young, L. Xing et al., Evidence for a Direct Role of Cyclo-Oxygenase 2 in Implant Wear Debris-Induced Osteolysis, Journal of Bone and Mineral Research, vol.15, issue.Suppl., pp.660-670, 2001.
DOI : 10.1097/00003086-199807000-00006

B. A. Warme, N. J. Epstein, M. C. Trindade, K. Miyanishi, T. Ma et al., Proinflammatory mediator expression in a novel murine model of titanium-particle-induced intramedullary inflammation, Journal of Biomedical Materials Research, vol.6, issue.2, pp.360-366, 2004.
DOI : 10.1002/jbm.b.30120

N. J. Epstein, B. A. Warme, J. Spanogle, T. Ma, B. Bragg et al., Interleukin-1 modulates periprosthetic tissue formation in an intramedullary model of particle-induced inflammation, Journal of Orthopaedic Research, vol.3, issue.3, pp.501-510, 2005.
DOI : 10.1016/S0002-9440(10)65266-2

Y. Shi, X. Yang, B. Nestor, M. Bostrom, N. Camacho et al., Histologic and FTIR studies on long term effect of PMMA particle in a murine intramedullary osteolysis model. -Recherche Google, Trans Orthop Res Soc, vol.53, p.217, 2007.

N. J. Epstein, W. E. Bragg, T. Ma, J. Spanogle, R. L. Smith et al., UHMWPE wear debris upregulates mononuclear cell proinflammatory gene expression in a novel murine model of intramedullary particle disease, Acta Orthop, vol.76, pp.412-420, 2005.

S. G. Ortiz, T. Ma, N. J. Epstein, R. L. Smith, and S. B. Goodman, Validation and quantification of anin vitro model of continuous infusion of submicron-sized particles, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.65, issue.2, pp.328-333, 2008.
DOI : 10.1097/00003086-199711000-00005

S. G. Ortiz, T. Ma, D. Regula, R. L. Smith, and S. B. Goodman, Continuous intramedullary polymer particle infusion using a murine femoral explant model, Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol.77, issue.2, pp.440-446, 2008.
DOI : 10.1002/jbm.a.30697

S. Yang, B. Wu, L. Mayton, C. H. Evans, P. D. Robbins et al., IL-1Ra and vIL-10 gene transfer using retroviral vectors ameliorates particle-associated inflammation in the murine air pouch model, Inflammation Research, vol.51, issue.7, pp.342-350, 2002.
DOI : 10.1007/PL00000313

S. Yang, B. Wu, L. Mayton, P. Mukherjee, P. D. Robbins et al., Protective effects of IL-1Ra or vIL-10 gene transfer on a murine model of wear debris-induced osteolysis, Gene Therapy, vol.260, issue.5, pp.483-491, 2004.
DOI : 10.1038/35005552

S. Yang, L. Mayton, B. Wu, J. J. Goater, E. M. Schwarz et al., Adeno-associated virus-mediated osteoprotegerin gene transfer protects against particulate polyethylene-induced osteolysis in a murine model, Arthritis & Rheumatism, vol.252, issue.9, pp.2514-2523, 2002.
DOI : 10.1002/art.10527

URL : http://onlinelibrary.wiley.com/doi/10.1002/art.10527/pdf

W. Ren, B. Wu, X. Peng, L. Mayton, D. Yu et al., Erythromycin inhibits wear debris-induced inflammatory osteolysis in a murine model, Journal of Orthopaedic Research, vol.45, issue.2, pp.280-290, 2006.
DOI : 10.5507/bp.2002.004

W. Ren, R. Zhang, D. C. Markel, B. Wu, X. Peng et al., Blockade of vascular endothelial growth factor activity suppresses wear debris-induced inflammatory osteolysis, J. Rheumatol, vol.34, pp.27-35, 2007.

W. Zhang, X. Peng, T. Cheng, and X. Zhang, Vascular endothelial growth factor gene silencing suppresses wear debris-induced inflammation, International Orthopaedics, vol.18, issue.12, pp.1883-1888, 2011.
DOI : 10.1002/jor.1100180321

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3224606/pdf

Y. Wang, N. Wu, M. Hu, Y. Mou, R. Li et al., Inhibitory Effect of Adenovirus-Mediated siRNA-Targeting BMPR-IB on UHMWPE-Induced Bone Destruction in the Murine Air Pouch Model, Connective Tissue Research, vol.109, issue.4, pp.528-534, 2012.
DOI : 10.1007/s00441-010-1052-y

D. Chen, X. Zhang, Y. Guo, S. Shi, X. Mao et al., MMP-9 inhibition suppresses wear debris-induced inflammatory osteolysis through downregulation of RANK/RANKL in a murine osteolysis model, International Journal of Molecular Medicine, vol.30, issue.6, 2012.
DOI : 10.3892/ijmm.2012.1145

M. Dai, Y. Zhong, L. Zong, X. Yang, M. Cheng et al., Inhibitory effects of vascular endothelial growth factor antibody on wear particle-induced osteolysis], Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, vol.26, pp.647-651, 2012.

L. M. Childs, J. J. Goater, R. J. O-'keefe, and E. M. Schwarz, Efficacy of Etanercept for Wear Debris-Induced Osteolysis, Journal of Bone and Mineral Research, vol.95, issue.Suppl, pp.338-347, 2001.
DOI : 10.1016/S0002-9440(10)65266-2

L. M. Childs, E. P. Paschalis, L. Xing, W. C. Dougall, D. Anderson et al., In Vivo RANK Signaling Blockade Using the Receptor Activator of NF-??B:Fc Effectively Prevents and Ameliorates Wear Debris-Induced Osteolysis via Osteoclast Depletion Without Inhibiting Osteogenesis, Journal of Bone and Mineral Research, vol.16, issue.Suppl, pp.192-199, 2002.
DOI : 10.1016/S0002-9440(10)65266-2

V. Knoch, F. Wedemeyer, C. Heckelei, A. Sprecher, C. Saxler et al., Ein Vergleich der antiresorptiven Effekte von Bisphosphonaten und Statinen auf Polyethylenpartikel-induzierte Osteolysen / A Comparison of the Antiresorptive Effects of Bisphosphonates and Statins on Polyethylene Particle-Induced Osteolysis, ) [A comparison of the antiresorptive effects of bisphosphonates and statins on polyethylene particle-induced osteolysis], pp.195-200, 2005.
DOI : 10.1055/s-2004-822589

V. Knoch, F. Heckelei, A. Wedemeyer, C. Saxler, G. Hilken et al., Suppression of polyethylene particle-induced osteolysis by exogenous osteoprotegerin, J Biomed Mater Res A, vol.75, pp.288-294, 2005.

C. Zhang, T. Tang, W. Ren, X. Zhang, and K. Dai, Inhibiting wear particles-induced osteolysis with doxycycline, Acta Pharmacologica Sinica, vol.453, issue.10, pp.1603-1610, 2007.
DOI : 10.1007/s00223-005-0062-3

S. Landgraeber, S. Jaeckel, F. Löer, C. Wedemeyer, G. Hilken et al., Pan-caspase inhibition suppresses polyethylene particle-induced osteolysis, Apoptosis, vol.21, issue.7, pp.173-181, 2009.
DOI : 10.4049/jimmunol.177.3.1975

M. D. Kauther, H. S. Bachmann, L. Neuerburg, M. Broecker-preuss, G. Hilken et al., Calcitonin substitution in calcitonin deficiency reduces particle-induced osteolysis, BMC Musculoskeletal Disorders, vol.14, issue.1, 2011.
DOI : 10.1186/2047-783X-14-6-250

URL : http://doi.org/10.1186/1471-2474-12-186

A. J. Rao, C. Nich, L. S. Dhulipala, E. Gibon, R. Valladares et al., Local effect of IL-4 delivery on polyethylene particle induced osteolysis in the murine calvarium, Journal of Biomedical Materials Research Part A, vol.6, issue.Part 3, 2012.
DOI : 10.1016/j.cmet.2007.07.006

Y. Yamanaka, J. C. Clohisy, H. Ito, T. Matsuno, and Y. Abu-amer, Blockade of JNK and NFAT pathways attenuates orthopedic particle-stimulated osteoclastogenesis of human osteoclast precursors and murine calvarial osteolysis, Journal of Orthopaedic Research, vol.32, issue.1, pp.67-72, 2013.
DOI : 10.1080/03009740310003929

D. W. Howie, D. R. Haynes, S. D. Rogers, M. A. Mcgee, and M. J. Pearcy, The response to particulate debris, Orthop. Clin. North Am, vol.24, pp.571-581, 1993.