, Classification of Tumours of Soft Tissue and Bone, pp.281-295, 2013.

D. Heymann and F. Redini, Bone sarcomas: pathogenesis and new therapeutic approaches, vol.8, pp.402-414, 2011.

K. Mori, F. Rédini, F. Gouin, B. Cherrier, and H. , Osteosarcoma: current status of immunotherapy and future trends, Oncol. Rep, vol.15, pp.693-700, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00667509

M. Kansara, M. W. Teng, M. J. Smyth, and D. M. Thomas, Translational biology of osteosarcoma, Nat. Rev. Cancer, vol.14, pp.722-735, 2014.

A. Alfranca, L. Martinez-cruzado, J. Tornin, A. Abarrategi, T. Amaral et al., Bone microenvironment signals in osteosarcoma development, Cell Mol. Life Sci, vol.72, pp.3097-3113, 2015.

M. F. Heymann, H. K. Brown, D. Heymann, and D. , Drugs in early development for the treatment of osteosarcoma, Expert Opin. Invest. Drugs, vol.25, pp.1265-1280, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01466096

A. B. Mohseny and P. C. Hogendoorn, Concise review: mesenchymal tumors: when stem cells go mad, Stem Cells, vol.29, pp.397-403, 2011.

A. J. Mutsaers and C. R. Walkley, Cells of origin in osteosarcoma: mesenchymal stem cells or osteoblast committed cells, Bone, vol.62, pp.56-63, 2014.

M. Kovac, C. Blattmann, S. Ribi, J. Smida, N. S. Mueller et al., Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency, Nat. Commun, vol.6, p.8940, 2015.

M. Bousquet, C. Noirot, F. Accadbled, J. Sales-de-gauzy, M. P. Castex et al., Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations, Ann. Oncol, vol.27, pp.738-744, 2016.

T. Borovski, E. Sousa, F. Melo, L. Vermeulen, and J. P. Medema, Cancer stem cell niche: the place to be, Cancer Res, vol.71, pp.634-639, 2011.

I. J. Fidler, The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited, Nat. Rev. Cancer, vol.3, pp.453-458, 2003.

M. Cortini, S. Avnet, and N. Baldini, Mesenchymal stroma: role in osteosarcoma progression, Cancer Lett, vol.405, pp.90-99, 2017.

H. K. Brown, M. Tellez-gabriel, and D. Heymann, Cancer stem cells in osteosarcoma, Cancer Lett, vol.386, pp.189-195, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01466078

N. Mcgranahan and C. Swanton, Clonal heterogeneity and tumor evolution: past, present, and the future, Cell, vol.168, pp.613-628, 2017.

P. Katsimbri, The biology of normal bone remodelling, Eur J Cancer Care

F. Deschaseaux, L. Sensébé, and D. Heymann, Mechanisms of bone repair and regeneration, Trends Mol. Med, vol.15, pp.417-429, 2009.

A. V. Rousselle and D. Heymann, Osteoclastic acidification pathways during bone resorption, Bone, vol.30, pp.533-540, 2002.

S. Theoleyre, Y. Wittrant, S. K. Tat, Y. Fortun, F. Redini et al., The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodelling, Cytokine Growth Factor Rev, vol.15, pp.457-475, 2004.

M. Baud'huin, F. Lamoureux, L. Duplomb, F. Rédini, D. Heymann et al., key partners of osteoimmunology and vascular diseases, vol.4, pp.2334-2350, 2007.

D. L. Lacey, E. Timms, H. L. Tan, M. J. Kelley, C. R. Dunstan et al., Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation, Cell, vol.93, pp.165-176, 1998.

H. J. Knowles and N. A. Athanasou, Canonical and non-canonical pathways of osteoclast formation, Histol. Histopathol, vol.24, pp.337-346, 2009.

M. Baud'huin, R. Renault, C. Charrier, A. Riet, A. Moreau et al., Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis, J. Pathol, vol.221, pp.77-86, 2010.

D. M. Anderson, E. Maraskovsky, W. L. Billingsley, W. C. Dougall, M. E. Tometsko et al., A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function, Nature, vol.390, pp.175-179, 1997.

B. R. Wong, R. Josien, S. Y. Lee, B. Sauter, H. L. Li et al., TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor, J. Exp. Med, vol.186, pp.2075-2080, 1997.

M. C. Walsh and Y. Choi, Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond, vol.5, p.511, 2014.

H. Takayanagi, Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems, Nat. Rev. Immunol, vol.7, pp.292-304, 2007.

N. Renema, B. Navet, M. F. Heymann, F. Lezot, and D. Heymann, RANK-RANKL signalling in cancer, Biosci. Rep, vol.36, p.366, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01644732

Y. Chen, M. A. Di-grappa, S. D. Molyneux, T. D. Mckee, P. Waterhouse et al., RANKL blockade prevents and treats aggressive osteosarcomas, vol.7, pp.317-197, 2015.

E. Grimaud, L. Soubigou, S. Couillaud, P. Coipeau, A. Moreau et al., Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis, Am. J. Pathol, vol.163, pp.2021-2031, 2003.

K. Mori, B. L. Goff, M. Berreur, A. Riet, A. Moreau et al., Human osteosarcoma cells express functional receptor activator of nuclear factor-kappa B, J. Pathol, vol.211, pp.555-562, 2007.

J. Rousseau, V. Escriou, F. Lamoureux, R. Brion, J. Chesneau et al., Formulated siRNAs targeting Rankl prevent osteolysis and enhance chemotherapeutic response in osteosarcoma models, J. Bone Miner. Res, vol.26, pp.2452-2462, 2011.

Z. Benslimane-ahmim, J. Pereira, A. Lokajczyk, B. Dizier, I. Galy-fauroux et al., Osteoprotegerin regulates cancer cell migration through SDF-1/CXCR4 axis and promotes tumour development by increasing neovascularization, Cancer Lett, vol.395, pp.11-19, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02327123

B. Gobin, M. Baud'huin, B. Isidor, D. Heymann, and M. F. Heymann, Monoclonal antibodies targeting RANKL in bone metastasis treatment, Future Medicine Ltd, pp.42-53, 2012.

R. Cathomas, C. Rothermundt, B. Bode, B. Fuchs, R. Moos et al., RANK ligand blockade with denosumab in combination with sorafenib in chemorefractory osteosarcoma: a possible step forward?, Oncology, vol.88, pp.257-260, 2015.

S. Avnet, A. Longhi, M. Salerno, J. M. Halleen, F. Perut et al., Increased osteoclast activity is associated with aggressiveness of osteosarcoma, Int. J. Oncol, vol.33, pp.1231-1238, 2008.

L. Endo-munoz, A. Evdokiou, and N. A. Saunders, The role of osteoclasts and tumourassociated macrophages in osteosarcoma metastasis, Biochim. Biophys. Acta, vol.2012, pp.434-442, 1826.

L. Ibáñez, G. Abou-ezzi, T. Ciucci, V. Amiot, N. Belaïd et al., Inflammatory osteoclasts prime TNF?producing CD4 + T cells and express CX 3 CR1, J. Bone Miner. Res, vol.31, pp.1899-1908, 2016.

P. Perrot, J. Rousseau, A. L. Bouffaut, F. Rédini, E. Cassagnau et al., Safety concern between autologous fat graft, mesenchymal stem cell and osteosarcoma recurrence, PLoS One, vol.5, p.10999, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00667931

B. Liu, Y. Huang, Y. Sun, J. Zhang, Y. Yao et al., Prognostic value of inflammation-based scores in patients with osteosarcoma, Sci. Rep, vol.6, p.39862, 2016.

T. Liu, X. C. Fang, Z. Ding, Z. G. Sun, L. M. Sun et al., Pre-operative lymphocyte-to-monocyte ratio as a predictor of overall survival in patients suffering from osteosarcoma, FEBS Open Biol, vol.5, pp.682-687, 2015.

Y. Inagaki, E. Hookway, K. A. Williams, A. B. Hassan, U. Oppermann et al., Clin. Sarcoma Res, vol.6, p.13, 2016.

C. Dumars, J. M. Ngyuen, A. Gaultier, R. Lanel, N. Corradini et al., Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma, Oncotarget, vol.7, pp.78343-78354, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01466103

F. Levi-schaffer and Z. Bar-shavit, Osteoblast-like cell line maintains in vitro rat peritoneal mast cell viability and functional activity, Immunology, vol.69, pp.145-149, 1990.

A. S. Ali, A. S. Lax, M. Liljeström, I. Paakkari, N. Ashammakhi et al., Mast cells in atherosclerosis as a source of the cytokine RANKL, Clin. Chem. Lab. Med, vol.44, pp.672-674, 2006.

J. Kroner, A. Kovtun, J. Kemmler, J. J. Messmann, G. Strauss et al., Mast cells are critical regulators of bone fracture-induced inflammation and osteoclast formation and activity, J. Bone Miner. Res

M. Cortini, A. Massa, S. Avnet, G. Bonuccelli, and N. Baldini, Tumor-associated mesenchymal stromal cells promote osteosarcoma stemness and migratory potential via IL-6 secretion, PLoS One, vol.11, p.166500, 2016.

Y. Wang, Y. Chu, B. Yue, X. Ma, G. Zhang et al., Adipose-derived mesenchymal stem cells promote osteosarcoma proliferation and metastasis by activating the STAT3 pathway, Oncotarget, vol.8, pp.23803-23816, 2017.

B. Tu, J. Zhu, S. Liu, L. Wang, Q. Fan et al., Mesenchymal stem cells promote osteosarcoma cell survival and drug resistance through activation of STAT3, Oncotarget, vol.7, pp.48296-48308, 2016.

F. X. Yu, W. J. Hu, B. He, Y. H. Zheng, Q. Y. Zhang et al., Bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion, World J. Surg. Oncol, vol.13, p.52, 2015.

M. Tellez-gabriel, C. Charrier, B. Brounais-le-royer, M. Mullard, H. K. Brown et al., Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip, Eur. J. Cell. Biol, vol.96, pp.110-118, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01466071

K. C. Vallabhaneni, M. Y. Hassler, A. Abraham, J. Whitt, Y. Y. Mo et al., Mesenchymal/stem stromal cells under stress increase osteosarcoma migration and apoptosis resistance via extracellular resistance via extracellular vesicle mediated communication, PLoS One, vol.11, p.166027, 2016.

S. Avnet, G. D. Pompo, T. Chano, C. Errani, A. Ibrahim-hashim et al., Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-?B activation, Int. J. Cancer, vol.140, pp.1331-1345, 2017.

E. Torreggiani, L. Roncuzzi, F. Perut, N. Zini, and N. Baldini, Multimodal transfer of MDR by exosomes in human osteosarcoma, Int. J. Oncol, vol.49, pp.189-196, 2016.

S. R. Baglio, T. Lagerweij, M. Pérez-lanzón, X. D. Ho, N. Léveillé et al., Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression, Clin. Cancer Res, vol.23, pp.3721-3733, 2017.

L. Zachar, D. Ba?enková, and J. Rosocha, Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment, J. Inflamm. Res, vol.9, pp.231-240, 2016.

G. Ren, L. Zhang, X. Zhao, G. Xu, Y. Zhang et al., Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide, Cell Stem Cell, vol.2, pp.141-150, 2008.

C. Lo-sicco, D. Reverberi, C. Balbi, V. Ulivi, E. Principi et al., Mesenchymal stem cell-derived extracellular vesicles as mediators of anti-inflammatory effects: endorsement of macrophage polarization, Stem Cells Transl. Med, vol.6, pp.1018-1028, 2017.

M. N. Michalski and L. K. Mccauley, Macrophages and skeletal health, Pharmacol. Ther, vol.174, pp.3-54, 2017.

M. Baud'huin, C. Charrier, G. Bougras, R. Brion, F. Lezot et al., Proteoglycans and osteolysis, Methods Mol. Biol, vol.836, pp.323-337, 2012.

P. Guihard, Y. Danger, B. Brounais, E. David, R. Brion et al., Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling, Stem Cells, vol.30, pp.762-772, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00668995

S. Gordon and F. O. Martinez, Alternative activation of macrophages: mechanism and functions, Immunity, vol.32, pp.593-604, 2010.

C. E. Lewis and J. W. Pollard, Distinct role of macrophages in different tumor microenvironments, Cancer Res, vol.66, pp.605-612, 2006.

R. Noy and J. W. Pollard, Tumor-associated macrophages: from mechanisms to therapy, Immunity, vol.41, pp.49-61, 2014.

B. Z. Qian and J. W. Pollard, Macrophage diversity enhances tumor progression and metastasis, Cell, vol.141, pp.39-51, 2010.

E. P. Buddingh, M. L. Kuijjer, R. A. Duim, H. Bürger, K. Agelopoulos et al., Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents, Clin. Cancer Res, vol.17, pp.2110-2119, 2011.

Q. Han, H. Shi, and F. Liu, CD163 + M2-type tumor-associated macrophage support the suppression of tumor-infiltrating T cells in osteosarcoma, Int. Immunopharmacol, vol.34, pp.101-106, 2016.

P. Hingorani, M. L. Maas, M. P. Gustafson, P. Dickman, R. H. Adams et al., Increased CTLA-4 + T cells and an increased ratio of monocytes with loss of class II (CD14 + HLA-DR lo/neg ) found in aggressive pediatric sarcoma patients, J. Immunother. Cancer, vol.3, p.35, 2015.

X. Li, Y. Chen, X. Liu, J. Zhang, X. He et al., Tim3/Gal9 interactions between T cells and monocytes result in an immunosuppressive feedback loop that inhibits Th1 responses in osteosarcoma patients, vol.44, pp.153-159, 2017.

A. I. Ségaliny, A. Mohamadi, B. Dizier, A. Lokajczyk, R. Brion et al., Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma trhough induction of angiogenesis and macrophage recruitment, Int. J. Cancer, vol.137, pp.73-85, 2015.

P. Kunz, J. Fellenberg, L. Moskovszky, Z. Sápi, T. Krenacs et al., Improved survival in osteosarcoma patients with atypical low vascularisation, Ann. Surg. Oncol, vol.22, pp.489-496, 2015.

K. Mori, K. Ando, and D. Heymann, Liposomal muramyl tripeptide phosphatidyl ethanolamine: a safe and effective agent against osteosarcoma pulmonary metastases, Expert Rev. Anticancer Ther, vol.8, pp.151-159, 2008.

K. Ando, M. Mori, N. Corradini, F. Redini, and D. Heymann, Mifamurtide for the treatment of nonmetastatic osteosarcoma, Expert Opin. Pharmacother, vol.12, pp.285-292, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00667530

J. H. Pahl, K. M. Kwappenberg, E. M. Varypataki, S. J. Santos, M. L. Kuijjer et al., Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-?, J. Exp. Clin. Cancer Res, vol.33, p.27, 2014.

Q. Zhou, M. Xian, S. Xiang, D. Xiang, X. Shao et al., All-trans retinoic acid prevents osteosarcoma metastasis by inhibiting M2 polarization of tumor-associated macrophages, Cancer Immunol. Res, vol.5, pp.547-559, 2017.

Y. Kimura and M. Sumiyoshi, Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells, Eur. J. Pharmacol, vol.746, pp.115-125, 2015.

M. Garcia-moure, N. Martinez-vélez, A. Patiño-garcía, and M. M. Alonso, Oncolytic adnovirus as a therapeutic approach for osteosarcoma: a new hope, J. Bone Oncol

M. Muthana, S. Rodrigues, Y. Y. Chen, A. Welford, R. Hughes et al., Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation, Cancer Res, vol.73, pp.490-495, 2013.

P. Koirala, M. E. Roth, J. Gill, S. Piperdi, J. M. Chinai et al., Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma, Sci. Rep, vol.6, p.30093, 2016.

B. Fritzsching, J. Fellenberg, L. Moskovszky, Z. Sápi, T. Krenacs et al., CD8 + /FOXP3 + ration in osteosarcoma microenvironment separates survivors from non-survivors: a multicentre validated retrospective study, vol.4, p.990800, 2015.

B. J. Biller, A. Guth, J. H. Burton, and S. W. Dow, Decreased ratio of CD8+ T cells to regulatory T cells associated with decreased survival in dogs with osteosarcoma, J. Vet. Intern. Med, vol.24, pp.1118-1123, 2010.

M. H. Geukes-foppen, M. Donia, I. M. Svane, and J. B. Haanen, Tumor-infiltrating lymphocytes for the treatment of metastatic cancer, Mol. Oncol, vol.9, pp.1918-1935, 2015.

C. S. Hinrichs and S. A. Rosenberg, Exploiting the curative potential of adoptive T-cell therapy for cancer, Immunol. Rev, vol.257, pp.56-71, 2014.

L. Rivoltini, F. Arienti, A. Orazi, G. Cefalo, M. Gasparini et al., Phenotypic and functional analysis of 3ymphocytes infiltrating paediatric tumours, with a characterization of the tumour phenotype, Cancer Immunol. Immunother, vol.34, pp.241-251, 1992.

S. Théoleyre, K. Mori, B. Cherrier, N. Passuti, F. Gouin et al., Phenotypic and functional analysis of lymphocytes infiltrating osteolytic tumors: use as a possible therapeutic approach of osteosarcoma, BMC Cancer, vol.5, p.123, 2005.

X. Zang and J. P. Allison, The B7 family and cancer therapy: costimulation and coinhibition, Clin. Cancer Res, vol.13, pp.5271-5279, 2007.

F. A. Schildberg, S. R. Klein, G. J. Freeman, and A. H. Sharpe, Coinhibitory pathways in the B7-CD28 ligand-receptor family, vol.44, pp.955-972, 2016.

S. J. Yin, W. J. Wang, and J. Y. Zhang, Expression of B7-H3 in cancer tissue during osteosarcoma progression in nude mice, Genet. Mol. Res, vol.14, pp.14253-14261, 2015.

L. Wang, Q. Zhang, W. Chen, B. Shan, Y. Ding et al., B7-H3 is overexpressed in patients suffering osteosarcoma and associated with tumor aggressiveness and metastasis, PLoS One, vol.8, p.70689, 2013.

N. Pinto, J. R. Park, E. Murphy, J. Yearley, T. Mcclanahan et al., Patterns of PD-1, PD-L1, and PD-L2 expression in pediatric solid tumors

J. K. Shen, G. M. Cote, E. Choy, P. Yang, D. Harmon et al., Programmed cell death ligand 1 expression in osteosarcoma, Cancer Immunol. Res, vol.2, pp.690-698, 2014.

Y. T. Sundara, M. Kostine, A. H. Cleven, J. V. Bovée, M. W. Schilham et al., Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy, Cancer Immunol. Immunother, vol.66, pp.119-128, 2017.

A. E. Van-erp, Y. M. Versleijen-jonkers, M. H. Hillebrandt-roeffen, L. Van-houdt, M. A. Gorris et al., Expression and clinical association of programmed cell death-1, programmed death-ligand-1 and CD8+lymphocytes in primary sarcomas is subtype dependent

Z. Zhu, Z. Jin, M. Zhang, Y. Tang, G. Yang et al., Prognostic value of programmed death-ligand 1 in sarcoma: a meta-analysis, Oncotarget, 2017.

N. Maekawa, S. Konnai, T. Okagawa, A. Nishimori, R. Ikebuchi et al., Immunohistochemical analysis of PD-L1 expression in canine malignant cancers and PD-1 expression on lymphocytes in canine oral melanoma, PLoS One, vol.11, p.157176, 2016.

W. Zheng, H. Xiao, H. Liu, and Y. Zhou, Expression of programmed death 1 is correlated with progression of osteosarcoma, APMIS, vol.123, pp.102-107, 2015.

D. M. Lussier, L. O'neill, L. M. Nieves, M. S. Mcafee, S. A. Holechek et al., Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions, J. Immunother, vol.38, pp.96-106, 2015.

Z. Li, Potential of human ?? T cells for immunotherapy of osteosarcoma, Mol. Biol. Rep, vol.40, pp.427-437, 2013.

D. Heymann, B. Ory, F. Gouin, J. R. Green, F. Rédini et al., Bisphosphonates, new therapeutic agents for the treatment of bone tumors, Trends Mol. Med, vol.10, pp.337-343, 2004.

M. Liu, L. L. Sun, Y. J. Li, H. Y. Li, J. Zhang et al., Trastuzumab enhanced the cytotoxicity of V?9V?2 T cells against zoledronate-sensitized osteosarcoma cells, Int. Immunopharmacol, vol.28, pp.160-167, 2015.

M. Muraro, O. M. Mereuta, F. Carraro, E. Madon, and F. Fagioli, Osteosarcoma cell line growth inhibition by zoledronate-stimulated effector cells, Cell Immunol, vol.249, pp.63-72, 2007.

Z. Li, H. Peng, Q. Xu, and Z. Ye, Sensitization of human osteosarcoma cells to V?9V?2 T-cell-mediated cytotoxicity by zoledronate, J. Orthop. Res, vol.30, pp.824-830, 2012.

Z. Li, Q. Xu, H. Peng, R. Cheng, Z. Sun et al., IFN-? enhances HOS and U2OS cell lines susceptibility to ?? T cell-mediated killing through the Fas/Fas ligand pathway, Int. Immunopharmacol, vol.11, pp.496-503, 2011.

C. Fleming, S. Morrissey, Y. Cai, and J. Yan, ?? T cells: unexpected regulators of cancer development and progression, Trends Cancer, vol.3, pp.561-570, 2017.

C. Derenzo and S. Gottschalk, Genetically modified T-cell therapy for osteosarcoma, Adv. Exp. Med. Biol, vol.804, pp.323-340, 2014.

N. Ahmed, V. S. Salsman, E. Yvon, C. U. Louis, L. Perlaky et al., Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression, Mol. Ther, vol.17, pp.1779-1787, 2009.

N. Rainusso, V. S. Brawley, A. Ghazi, M. J. Hicks, S. Gottschalk et al., Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma, Cancer Gene Ther, vol.19, pp.212-217, 2012.

C. Chauvin, J. M. Philippeau, C. Hémont, F. X. Hubert, Y. Wittrant et al., Killer dendritic cells link innate and adaptive immunity against established osteosarcoma in rats, Cancer Res, vol.68, pp.9433-9440, 2008.

Y. T. He, Q. M. Zhang, Q. C. Kou, and B. Tang, In vitro generation of cytotoxic T lymphocyte response using dendritic cell immunotherapy in osteosarcoma, Oncol. Lett, vol.12, pp.1101-1106, 2016.

M. Kawano, K. Tanaka, I. Itonaga, T. Iwasaki, M. Miyazaki et al., Dendritic cells combined with anti-GITR antibody produce antitumor effects in osteosarcoma, Oncol. Rep, vol.34, pp.1995-2001, 2015.

M. Kawano, I. Itonaga, T. Iwasaki, H. Tsuchiya, and H. Tsumura, Anti-TGF-? antibody combined with dendritic cells produce antitumor effects in osteosarcoma, Clin. Orthop. Relat. Res, vol.470, pp.2288-2294, 2012.

X. Fang, C. Jiang, and Q. Xia, Effectiveness evaluation of dendritic cell immunotherapy for osteosarcoma on survival rate and in vitro immune response, Genet. Mol. Res, vol.14, pp.11763-11770, 2015.

D. K. Krishnadas, S. Shusterman, F. Bai, L. Diller, J. E. Sullivan et al., A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma, Cancer Immunol. Immunother, vol.64, pp.1251-1260, 2015.

N. Tarek and D. A. Lee, Natural killer cells for osteosarcoma, Adv. Exp. Med. Biol, vol.804, pp.341-353, 2014.

L. Fernández, J. Valentín, M. Zalacain, W. Leung, A. Patiño-garcía et al., Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D-NKG2DL dependent manner, Cancer Lett, vol.368, pp.54-63, 2015.

S. Kiany and N. Gordon, Aerosol delivery of interleukin-2 in combination with adoptive transfer of natural killer cells for the treatment of lung metastasis: methodology and effect, Methods Mol. Biol, vol.1441, pp.285-295, 2016.

E. P. Buddingh, M. W. Schilham, S. E. Ruslan, D. Berghuis, K. Szuhai et al., Chemotherapy-resistant osteosarcoma is highly susceptible to IL-15-activated allogeneic and autologous NK cells, Cancer Immunol. Immunother, vol.60, pp.575-586, 2011.

S. R. Guma, D. A. Lee, Y. Ling, N. Gordon, and E. S. Kleinerman, Aerosol interleukin-2 induces natural killer cell proliferation in the lung and combination therapy improves the survival of mice with osteosarcoma lung metastasis, Pediatr. Blood Cancer, vol.61, pp.1362-1368, 2014.

S. Fallarini, T. Paoletti, N. Battaglini, and G. Lombardi, Invariant NKT cells increase drug-induced osteosarcoma cell death, Br. J. Pharmacol, vol.167, pp.1533-1549, 2012.

D. Siolas and G. J. Hannon, Patient-derived tumor xenografts: transforming clinical samples into mouse models, Cancer Res, vol.73, pp.5315-5319, 2013.

R. M. Hoffman, Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts, Nat. Rev. Cancer, vol.15, pp.451-452, 2015.

R. M. Hoffman, Patient-Derived Mouse Models of Cancer, Molecular and Translational Medicine Series, 2017.

P. Guilhamon, L. M. Butcher, N. Presneau, G. A. Wilson, A. Feber et al., Assessment of patient-derived tumour xenografts (PDXs) as a discovery tool for cancer epigenomics, Genome Med, vol.6, p.116, 2014.

K. Igarashi, T. Murakami, K. Kawaguchi, T. Kiyuna, K. Miyake et al., A patient-derived orthotopic xenograft (PDOX) mouse model of a cisplatinum-resistant osteosarcoma lung metastasis that was sensitive to temozolomide and trabectedin: implications for precision oncology, Oncotarget, vol.8, pp.62111-62119, 2017.

C. Blattmann, M. Thiemann, A. Stenzinger, E. K. Roth, A. Dittmar et al., Establishment of a patient-derived orthotopic osteosarcoma mouse model, J. Transl. Med, vol.13, p.136, 2015.

T. Murakami, K. Igarashi, K. Kawaguchi, T. Kiyuna, Y. Zhang et al., Tumor-targeting Salmonella typhimurium A1-R regresses an osteosarcoma in a patient-derived xenograft model resistant to a molecular-targeting drug, Oncotarget, vol.8, pp.8035-8042, 2017.

K. Igarashi, K. Kawaguchi, T. Murakami, T. Kiyuna, K. Miyake et al., Intra-arterial administration of tumor-targeting Salmonella typhimurium A1-R regresses a cisplatin-resistant relapsed osteosarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model, Cell Cycle, vol.16, pp.1164-1170, 2017.

H. Jespersen, M. F. Lindberg, M. Donia, E. M. Söderberg, R. Andersen et al., Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model, Nat. Commun, vol.8, p.707, 2017.