D. Heymann and F. Redini, Bone sarcomas: pathogenesis and new therapeutic approaches, IBMS BoneKEy, vol.8, issue.9, pp.402-414, 2011.
DOI : 10.1138/20110531

K. Mori, F. Rédini, F. Gouin, B. Cherrier, and . Heymann, Osteosarcoma: current status of immunotherapy and future trends, Oncol. Rep, vol.15, pp.693-700, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00667509

M. Kansara, M. W. Teng, M. J. Smyth, and D. M. Thomas, Translational biology of osteosarcoma, Translational biology of osteosarcoma, pp.722-757, 2014.
DOI : 10.3109/02841869509127199

A. Alfranca, L. Martinez-cruzado, J. Tornin, A. Abarrategi, T. Amaral et al., Bone microenvironment signals in osteosarcoma development, Cellular and Molecular Life Sciences, vol.128, issue.2, pp.72-3097, 2015.
DOI : 10.1002/ijc.25331

M. F. Heymann, H. K. Brown, and D. , Drugs in early clinical development for the treatment of osteosarcoma, Expert Opinion on Investigational Drugs, vol.50, issue.6, pp.1265-1280, 2016.
DOI : 10.1038/srep20944

URL : https://hal.archives-ouvertes.fr/inserm-01466096

A. B. Mohseny and P. C. Hogendoorn, Concise Review: Mesenchymal Tumors: When Stem Cells Go Mad, STEM CELLS, vol.70, issue.3, pp.397-403, 2011.
DOI : 10.1158/0008-5472.CAN-10-1305

URL : http://onlinelibrary.wiley.com/doi/10.1002/stem.596/pdf

A. J. Mutsaers and C. R. Walkley, Cells of origin in osteosarcoma: Mesenchymal stem cells or osteoblast committed cells?, Bone, vol.62, pp.56-63, 2014.
DOI : 10.1016/j.bone.2014.02.003

I. Schaser, S. Melcher, A. Burdach, K. Kulozik, K. Specht et al., Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency, Nat. Commun, vol.6, issue.8940, 2015.

M. Bousquet, C. Noirot, F. Accadbled, J. Sales-de-gauzy, M. P. Castex et al., Whole-exome sequencing in osteosarcoma reveals important heterogeneity of genetic alterations, Annals of Oncology, vol.27, issue.4, pp.27-738, 2016.
DOI : 10.1093/annonc/mdw009

T. Borovski, E. De-sousa, F. Melo, L. Vermeulen, and J. P. Medema, Cancer Stem Cell Niche: The Place to Be, Cancer Research, vol.71, issue.3, pp.71-634, 2011.
DOI : 10.1158/0008-5472.CAN-10-3220

I. J. Fidler, Timeline: The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited, Nature Reviews Cancer, vol.3, issue.6, pp.453-458, 2003.
DOI : 10.1038/nrc1098

M. Cortini, S. Avnet, and N. Baldini, Mesenchymal stroma: Role in osteosarcoma progression, Cancer Letters, vol.405, pp.90-99, 2017.
DOI : 10.1016/j.canlet.2017.07.024

H. K. Brown, M. Tellez-gabriel, and D. Heymann, Cancer stem cells in osteosarcoma, Cancer Letters, vol.386, pp.189-195, 2017.
DOI : 10.1016/j.canlet.2016.11.019

URL : https://hal.archives-ouvertes.fr/inserm-01466078

N. Mcgranahan and C. Swanton, Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future, Cell, vol.168, issue.4, pp.613-628, 2017.
DOI : 10.1016/j.cell.2017.01.018

P. Katsimbri, The biology of normal bone remodelling, European Journal of Cancer Care, vol.345, issue.6
DOI : 10.1038/345442a0

F. Deschaseaux, L. Sensébé, and D. Heymann, Mechanisms of bone repair and regeneration, Trends in Molecular Medicine, vol.15, issue.9, pp.417-446, 2009.
DOI : 10.1016/j.molmed.2009.07.002

A. V. Rousselle and D. Heymann, Osteoclastic acidification pathways during bone resorption, Bone, vol.30, issue.4, pp.533-573, 2002.
DOI : 10.1016/S8756-3282(02)00672-5

S. Theoleyre, Y. Wittrant, S. K. Tat, Y. Fortun, F. Redini et al., The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling, Cytokine & Growth Factor Reviews, vol.15, issue.6, pp.457-475, 2004.
DOI : 10.1016/j.cytogfr.2004.06.004

M. Baud-'huin, F. Lamoureux, L. Duplomb, F. Rédini, D. Heymann et al., osteoprotegerin: key partners of osteoimmunology and vascular diseases, Cell. Mol. Life Sci, vol.4, pp.2334-2350, 2007.

. Boyle, Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation, Cell, vol.93, pp.165-176, 1998.

H. J. Knowles and N. A. Athanasou, Canonical and non-canonical pathways of osteoclast formation, Histol. Histopathol, vol.24, pp.337-346, 2009.

D. Duplomb and . Heymann, Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis, J. Pathol, vol.221, pp.77-86, 2010.

D. M. Anderson, E. Maraskovsky, W. L. Billingsley, W. C. Dougall, M. E. Tometsko et al., A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function, Nature, vol.272, issue.6656, pp.175-179, 1997.
DOI : 10.1074/jbc.272.40.25190

B. R. Wong, R. Josien, S. Y. Lee, B. Sauter, H. L. Li et al., TRANCE (Tumor Necrosis Factor [TNF]-related Activation-induced Cytokine), a New TNF Family Member Predominantly Expressed in T cells, Is a Dendritic Cell???specific Survival Factor, The Journal of Experimental Medicine, vol.372, issue.12
DOI : 10.1084/jem.183.1.7

M. C. Walsh and Y. Choi, Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond, Front. Immunol, vol.5, p.511, 2014.

H. Takayanagi, Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems, Nature Reviews Immunology, vol.50, issue.4, pp.292-304, 2007.
DOI : 10.1016/S0002-9440(10)63016-7

N. Renema, B. Navet, M. F. Heymann, F. Lezot, and D. Heymann, RANK-RANKL signalling in cancer, Bioscience Reports, vol.36, issue.4, p.366, 2016.
DOI : 10.1042/BSR20160150

URL : https://hal.archives-ouvertes.fr/inserm-01644732

Y. Chen, M. A. Di-grappa, S. D. Molyneux, T. D. Mckee, P. Waterhouse et al., RANKL blockade prevents and treats aggressive osteosarcomas, Science Translational Medicine, vol.31, issue.5
DOI : 10.1007/s00259-003-1441-5

D. Redini and . Heymann, Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis, Am. J. Pathol, vol.163, pp.2021-2031, 2003.

J. Guisle-marsollier, J. Léger, M. Guicheux, F. Masson, F. Gouin et al., Human osteosarcoma cells express functional receptor activator of nuclear factor-kappa B, J. Pathol, pp.211-555, 2007.

J. Rousseau, V. Escriou, F. Lamoureux, R. Brion, J. Chesneau et al., Formulated siRNAs targeting Rankl prevent osteolysis and enhance chemotherapeutic response in osteosarcoma models, Journal of Bone and Mineral Research, vol.390, issue.10, pp.26-2452, 2011.
DOI : 10.1016/j.bbrc.2009.10.020

Z. Benslimane-ahmim, J. Pereira, A. Lokajczyk, B. Dizier, I. Galy-fauroux et al., Osteoprotegerin regulates cancer cell migration through SDF-1/CXCR4 axis and promotes tumour development by increasing neovascularization, Cancer Lett, pp.395-406, 2017.
DOI : 10.1016/j.canlet.2017.02.032

B. Gobin, M. Baud-'huin, B. Isidor, D. Heymann, and . Heymann, Monoclonal antibodies targeting RANKL in bone metastasis treatment, Monoclonal antibodies in oncology Fatih M. Uckum, eBook Future Medicine Ltd, pp.42-53, 2012.

R. Cathomas, C. Rothermundt, B. Bode, B. Fuchs, R. Von-moos et al., RANK Ligand Blockade with Denosumab in Combination with Sorafenib in Chemorefractory Osteosarcoma: A Possible Step Forward?, Oncology, vol.88, issue.4, pp.257-260, 2015.
DOI : 10.1159/000369975

A. Bertoni, N. Giunti, and . Baldini, Increased osteoclast activity is associated with aggressiveness of osteosarcoma, Int. J. Oncol, vol.33, pp.1231-1238, 2008.

L. Endo-munoz, A. Evdokiou, and N. A. Saunders, The role of osteoclasts and tumourassociated macrophages in osteosarcoma metastasis, Biochim. Biophys. Acta, vol.1826, pp.434-442, 2012.

A. Rouleau, C. Wakkach, and . Blin-wakkach, Inflammatory Osteoclasts Prime TNF?-Producing CD4+ T Cells and Express CX3 CR1, J. Bone Miner. Res, pp.31-1899, 2016.

D. Heymann, F. Heymann, V. Duteille, F. Trichet, and . Gouin, Safety concern between autologous fat graft, mesenchymal stem cell and osteosarcoma recurrence, PLoS One, vol.5, p.10999, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00667931

B. Liu, Y. Huang, Y. Sun, J. Zhang, Y. Yao et al., Prognostic value of inflammation-based scores in patients with osteosarcoma, Scientific Reports, vol.34, issue.1, 2016.
DOI : 10.1111/j.1365-2796.1990.tb00262.x

T. Liu, X. C. Fang, Z. Ding, Z. G. Sun, L. M. Sun et al., Pre-operative lymphocyte-to-monocyte ratio as a predictor of overall survival in patients suffering from osteosarcoma, FEBS Open Bio, vol.34, issue.1, pp.682-687, 2015.
DOI : 10.1186/s40880-015-0025-7

C. Dumars, J. M. Ngyuen, A. Gaultier, R. Lanel, N. Corradini et al., Dysregulation of macrophage polarization is associated with the metastatic process in osteosarcoma, Oncotarget, vol.7, pp.78343-78354, 2016.
DOI : 10.18632/oncotarget.13055

URL : https://hal.archives-ouvertes.fr/inserm-01466103

F. Levi-schaffer and Z. Bar-shavit, Osteoblast-like cell line maintains in vitro rat peritoneal mast cell viability and functional activity, Immunology, vol.69, pp.145-149, 1990.

. Konttinen, Mast cells in atherosclerosis as a source of the cytokine RANKL, Clin. Chem. Lab. Med, vol.44, pp.672-674, 2006.

J. Amling, J. Kotrba, A. Dudeck, A. Dudeck, and . Ignatius, Mast cells are critical regulators of bone fracture-induced inflammation and osteoclast formation and activity, J. Bone Miner. Res

M. Cortini, A. Massa, S. Avnet, G. Bonuccelli, and N. Baldini, Tumor-associated mesenchymal stromal cells promote osteosarcoma stemness and migratory potential via IL-6 secretion, PLoS One, pp.11-0166500, 2016.
DOI : 10.1371/journal.pone.0166500

URL : https://doi.org/10.1371/journal.pone.0166500

B. Tu, J. Zhu, S. Liu, L. Wang, Q. Fan et al., Mesenchymal stem cells promote osteosarcoma cell survival and drug resistance through activation of STAT3, Oncotarget, vol.7, issue.30, pp.48296-48308, 2016.
DOI : 10.18632/oncotarget.10219

F. X. Yu, W. J. Hu, B. He, Y. H. Zheng, Q. Y. Zhang et al., Bone marrow mesenchymal stem cells promote osteosarcoma cell proliferation and invasion, World Journal of Surgical Oncology, vol.13, issue.1, p.13, 2015.
DOI : 10.1155/2011/959248

URL : https://wjso.biomedcentral.com/track/pdf/10.1186/s12957-015-0465-1?site=wjso.biomedcentral.com

D. Verrecchia and . Heymann, Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip, Eur, J. Cell. Biol, vol.96, pp.110-118, 2017.

. Pochampally, Mesenchymal/stem stromal cells under stress increase osteosarcoma migration and apoptosis resistance via extracellular resistance via extracellular vesicle mediated communication, PLoS One, vol.11, p.166027, 2016.

N. Donati and . Baldini, Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-?B activation, Int. J. Cancer, vol.140, pp.1331-1345, 2017.

E. Torreggiani, L. Roncuzzi, F. Perut, N. Zini, and N. Baldini, Multimodal transfer of MDR by exosomes in human osteosarcoma, International Journal of Oncology, vol.49, issue.1, pp.189-96, 2016.
DOI : 10.3892/ijo.2016.3509

L. Zachar, D. Ba?enková, and J. Rosocha, Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment, Journal of Inflammation Research, vol.9, pp.231-240, 2016.
DOI : 10.2147/JIR.S121994

G. Ren, L. Zhang, X. Zhao, G. Xu, Y. Zhang et al., Mesenchymal Stem Cell-Mediated Immunosuppression Occurs via Concerted Action of Chemokines and Nitric Oxide, Cell Stem Cell, vol.2, issue.2, pp.141-150, 2008.
DOI : 10.1016/j.stem.2007.11.014

C. Lo-sicco, D. Reverberi, C. Balbi, V. Ulivi, E. Principi et al., Mesenchymal Stem Cell-Derived Extracellular Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization, STEM CELLS Translational Medicine, vol.194, issue.3, pp.1018-1028, 2017.
DOI : 10.4049/jimmunol.1401420

M. N. Michalski and L. K. Mccauley, Macrophages and skeletal health, Pharmacology & Therapeutics, vol.174, pp.3-54, 2017.
DOI : 10.1016/j.pharmthera.2017.02.017

M. Baud-'huin, C. Charrier, G. Bougras, R. Brion, F. Lezot et al., Proteoglycans and osteolysis, Methods Mol. Biol, vol.836, pp.323-337, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00667515

F. Chevalier, D. Rédini, H. Heymann, F. Gascan, and . Blanchard, Induction of osteogenesis in mesenchymal stem cells by activated monocytes/macrophages depends on oncostatin M signaling, Stem Cells, vol.30, pp.762-772, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00668995

S. Gordon and F. O. Martinez, Alternative Activation of Macrophages: Mechanism and Functions, Immunity, vol.32, issue.5, pp.593-604, 2010.
DOI : 10.1016/j.immuni.2010.05.007

C. E. Lewis and J. W. Pollard, Distinct Role of Macrophages in Different Tumor Microenvironments, Cancer Research, vol.66, issue.2, pp.605-612, 2006.
DOI : 10.1158/0008-5472.CAN-05-4005

R. Noy and J. W. Pollard, Tumor-Associated Macrophages: From Mechanisms to Therapy, Immunity, vol.41, issue.1, pp.49-61, 2014.
DOI : 10.1016/j.immuni.2014.06.010

URL : https://doi.org/10.1016/j.immuni.2014.09.021

B. Z. Qian and J. W. Pollard, Macrophage Diversity Enhances Tumor Progression and Metastasis, Cell, vol.141, issue.1, pp.39-51, 2010.
DOI : 10.1016/j.cell.2010.03.014

URL : https://doi.org/10.1016/j.cell.2010.03.014

E. P. Buddingh, M. L. Kuijjer, R. A. Duim, H. Bürger, K. Agelopoulos et al., Tumor-Infiltrating Macrophages Are Associated with Metastasis Suppression in High-Grade Osteosarcoma: A Rationale for Treatment with Macrophage Activating Agents, Clinical Cancer Research, vol.17, issue.8, pp.2110-2119, 2011.
DOI : 10.1158/1078-0432.CCR-10-2047

Q. Han, H. Shi, and F. Liu, CD163+ M2-type tumor-associated macrophage support the suppression of tumor-infiltrating T cells in osteosarcoma, International Immunopharmacology, vol.34, pp.101-106, 2016.
DOI : 10.1016/j.intimp.2016.01.023

J. Eshun, M. J. Williams, A. B. Seidel, and . Dietz, Increased CTLA-4 + T cells and an increased ratio of monocytes with loss of class II (CD14 + HLA-DR lo/neg ) found in aggressive pediatric sarcoma patients, J. Immunother. Cancer, vol.3, issue.35, 2015.

X. Li, Y. Chen, X. Liu, J. Zhang, X. He et al., Tim3/Gal9 interactions between T cells and monocytes result in an immunosuppressive feedback loop that inhibits Th1 responses in osteosarcoma patients, International Immunopharmacology, vol.44, pp.44153-159, 2017.
DOI : 10.1016/j.intimp.2017.01.006

A. I. Ségaliny, A. Mohamadi, B. Dizier, A. Lokajczyk, R. Brion et al., Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment, International Journal of Cancer, vol.1, issue.Suppl3, pp.73-85, 2015.
DOI : 10.1158/2159-8274.CD-10-0028

. Fritzsching, Improved survival in osteosarcoma patients with atypical low vascularisation

K. Mori, K. Ando, and D. Heymann, Liposomal muramyl tripeptide phosphatidyl ethanolamine: a safe and effective agent against osteosarcoma pulmonary metastases, Expert Review of Anticancer Therapy, vol.168, issue.2, pp.151-159, 2008.
DOI : 10.1016/S0022-5347(05)64148-1

K. Ando, M. Mori, N. Corradini, F. Redini, and D. Heymann, Mifamurtide for the treatment of nonmetastatic osteosarcoma, Expert Opinion on Pharmacotherapy, vol.50, issue.1, pp.285-292, 2011.
DOI : 10.1007/BF01741788

URL : https://hal.archives-ouvertes.fr/inserm-00667530

J. H. Pahl, K. M. Kwappenberg, E. M. Varypataki, S. J. Santos, M. L. Kuijjer et al., Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-??, Journal of Experimental & Clinical Cancer Research, vol.33, issue.1, 2014.
DOI : 10.1126/science.1198443

Q. Ying and . He, All-trans retinoic acid prevents osteosarcoma metastasis by inhibiting M2 polarization of tumor-associated macrophages, Cancer Immunol. Res, vol.5, pp.547-559, 2017.

Y. Kimura and M. Sumiyoshi, Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumorassociated macrophages and/or G1 arrest in tumor cells, Eur. J. Pharmacol, pp.746-115, 2015.

M. Garcia-moure, N. Martinez-vélez, A. Patiño-garcía, and M. M. Alonso, Oncolytic adnovirus as a therapeutic approach for osteosarcoma: a new hope, J. Bone Oncol

F. Essand, C. E. Morrow, and . Lewis, Macrophage delivery of an oncolytic virus abolishes tumor regrowth and metastasis after chemotherapy or irradiation, Cancer Res, vol.73, pp.490-495, 2013.

P. Koirala, M. E. Roth, J. Gill, S. Piperdi, J. M. Chinai et al., Immune infiltration and PD-L1 expression in the tumor microenvironment are prognostic in osteosarcoma, Scientific Reports, vol.112, issue.1, 2016.
DOI : 10.1002/cncr.23437

R. Ewerbeck, P. Kinscherf, and . Kunz, CD8 + /FOXP3 + ration in osteosarcoma microenvironment separates survivors from non-survivors: a multicentre validated retrospective study, p.990800, 2015.

B. J. Biller, A. Guth, J. H. Burton, and S. W. Dow, Decreased Ratio of CD8+ T Cells to Regulatory T Cells Associated with Decreased Survival in Dogs with Osteosarcoma, Journal of Veterinary Internal Medicine, vol.123, issue.1-2, pp.24-1118, 2010.
DOI : 10.4049/jimmunol.172.8.4752

M. H. Geukes-foppen, M. Donia, I. M. Svane, and J. B. Haanen, Tumor-infiltrating lymphocytes for the treatment of metastatic cancer, Molecular Oncology, vol.33, issue.Suppl. 1, 1918.
DOI : 10.1200/JCO.2014.60.6566

C. S. Hinrichs and S. A. Rosenberg, Exploiting the curative potential of adoptive T-cell therapy for cancer, Immunological Reviews, vol.2, issue.1, pp.56-71, 2014.
DOI : 10.1182/blood-2009-02-203935

L. Rivoltini, F. Arienti, A. Orazi, G. Cefalo, M. Gasparini et al., Phenotypic and functional analysis of 3ymphocytes infiltrating paediatric tumours, with a characterization of the tumour phenotype, Cancer Immunol. Immunother, pp.34-241, 1992.

S. Théoleyre, K. Mori, B. Cherrier, N. Passuti, F. Gouin et al., Phenotypic and functional analysis of lymphocytes infiltrating osteolytic tumors: use as a possible therapeutic approach of osteosarcoma, BMC Cancer, vol.17, issue.1, 2005.
DOI : 10.1080/08880010050034283

X. Zang and J. P. Allison, The B7 Family and Cancer Therapy: Costimulation and Coinhibition, Clinical Cancer Research, vol.13, issue.18, pp.5271-5279, 2007.
DOI : 10.1158/1078-0432.CCR-07-1030

URL : http://clincancerres.aacrjournals.org/content/clincanres/13/18/5271.full.pdf

F. A. Schildberg, S. R. Klein, G. J. Freeman, and A. H. Sharpe, Coinhibitory Pathways in the B7-CD28 Ligand-Receptor Family, Immunity, vol.44, issue.5, pp.955-972, 2016.
DOI : 10.1016/j.immuni.2016.05.002

S. J. Yin, W. J. Wang, and J. Y. Zhang, Expression of B7-H3 in cancer tissue during osteosarcoma progression in nude mice, Genetics and Molecular Research, vol.14, issue.4, pp.14253-61, 2015.
DOI : 10.4238/2015.November.13.9

L. Wang, Q. Zhang, W. Chen, B. Shan, Y. Ding et al., B7-H3 is Overexpressed in Patients Suffering Osteosarcoma and Associated with Tumor Aggressiveness and Metastasis, PLoS ONE, vol.283, issue.8, p.70689, 2013.
DOI : 10.1371/journal.pone.0070689.s001

E. R. Hawkins and . Rudzinski, Patterns of PD-1, PD-L1, and PD-L2 expression in pediatric solid tumors, Pediatr. Blood Cancer in press

J. K. Shen, G. M. Cote, E. Choy, P. Yang, D. Harmon et al., Programmed Cell Death Ligand 1 Expression in Osteosarcoma, Cancer Immunology Research, vol.2, issue.7, pp.690-698, 2014.
DOI : 10.1158/2326-6066.CIR-13-0224

. Jansen, Increased PD-L1 and T-cell infiltration in the presence of HLA class I expression in metastatic high-grade osteosarcoma: a rationale for T-cell-based immunotherapy, Cancer Immunol. Immunother, pp.66-119, 2017.

. Meyer-wentrup, Expression and clinical association of programmed cell death-1, programmed death-ligand-1 and CD8+ lymphocytes in primary sarcomas is subtype dependent

Z. Zhu, Z. Jin, M. Zhang, Y. Tang, G. Yang et al., Prognostic value of programmed death-ligand 1 in sarcoma: a meta-analysis, Immunohistochemical Analysis of PD-L1 Expression in Canine Malignant Cancers and PD-1 Expression on Lymphocytes in Canine Oral Melanoma, p.157176, 1994.
DOI : 10.18632/oncotarget.19168

W. Zheng, H. Xiao, H. Liu, and Y. Zhou, Expression of programmed death 1 is correlated with progression of osteosarcoma, APMIS, vol.37, issue.2, pp.102-107, 2015.
DOI : 10.1007/s10753-013-9718-8

P. Dickman, J. Jacobsen, P. Hingorani, and J. N. Blattman, Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions, J. Immunother, pp.38-96, 2015.

Z. Li, Potential of human ???? T cells for immunotherapy of osteosarcoma, Molecular Biology Reports, vol.15, issue.1, pp.427-437, 2013.
DOI : 10.1002/jor.1100150119

D. Heymann, B. Ory, F. Gouin, J. R. Green, F. Rédini et al., Bisphosphonates: new therapeutic agents for the treatment of bone tumors, Trends in Molecular Medicine, vol.10, issue.7, pp.337-343, 2004.
DOI : 10.1016/j.molmed.2004.05.007

M. Liu, L. L. Sun, Y. J. Li, H. Y. Li, J. Zhang et al., Trastuzumab enhanced the cytotoxicity of V??9V??2 T cells against zoledronate-sensitized osteosarcoma cells, International Immunopharmacology, vol.28, issue.1, pp.28-160, 2015.
DOI : 10.1016/j.intimp.2015.06.002

M. Muraro, O. M. Mereuta, F. Carraro, E. Madon, and F. Fagioli, Osteosarcoma cell line growth inhibition by zoledronate-stimulated effector cells, Cellular Immunology, vol.249, issue.2, pp.63-72, 2007.
DOI : 10.1016/j.cellimm.2007.11.005

Z. Li, H. Peng, Q. Xu, and Z. Ye, Sensitization of human osteosarcoma cells to V??9V??2 T-cell-mediated cytotoxicity by zoledronate, Journal of Orthopaedic Research, vol.171, issue.5, pp.824-830, 2012.
DOI : 10.4049/jimmunol.171.5.2402

Z. Li, Q. Xu, H. Peng, R. Cheng, Z. Sun et al., IFN-?? enhances HOS and U2OS cell lines susceptibility to ???? T cell-mediated killing through the Fas/Fas ligand pathway, International Immunopharmacology, vol.11, issue.4, pp.11-496, 2011.
DOI : 10.1016/j.intimp.2011.01.001

C. Fleming, S. Morrissey, Y. Cai, and J. , ???? T Cells: Unexpected Regulators of Cancer Development and Progression, Trends in Cancer, vol.3, issue.8, pp.561-570, 2017.
DOI : 10.1016/j.trecan.2017.06.003

C. Derenzo and S. Gottschalk, Genetically Modified T-Cell Therapy for Osteosarcoma, Adv. Exp. Med. Biol, vol.804, pp.323-340, 2014.
DOI : 10.1007/978-3-319-04843-7_18

N. Ahmed, V. S. Salsman, E. Yvon, C. U. Louis, L. Perlaky et al., Immunotherapy for Osteosarcoma: Genetic Modification of T cells Overcomes Low Levels of Tumor Antigen Expression, Molecular Therapy, vol.17, issue.10, pp.1779-1787, 2009.
DOI : 10.1038/mt.2009.133

. Ahmed, Immunotherapy targeting HER2 with genetically modified T cells eliminates tumorinitiating cells in osteosarcoma, Cancer Gene Ther, vol.19, pp.212-217, 2012.

D. Trinité, F. Heymann, R. Rédini, and . Josien, Killer dendritic cells link innate and adaptive immunity against established osteosarcoma in rats, Cancer Res, vol.68, pp.9433-9440, 2008.

Y. T. He, Q. M. Zhang, Q. C. Kou, and B. Tang, In??????vitro generation of cytotoxic T??????lymphocyte response using dendritic cell immunotherapy in osteosarcoma, Oncology Letters, pp.12-1101, 2016.
DOI : 10.3892/ol.2016.4714

M. Kawano, K. Tanaka, I. Itonaga, T. Iwasaki, M. Miyazaki et al., Dendritic cells combined with anti-GITR antibody produce antitumor effects in osteosarcoma, Oncology Reports, vol.34, issue.4, p.34, 1995.
DOI : 10.3892/or.2015.4161

M. Kawano, I. Itonaga, T. Iwasaki, H. Tsuchiya, and H. Tsumura, Anti-TGF-?? Antibody Combined with Dendritic Cells Produce Antitumor Effects in Osteosarcoma, Clinical Orthopaedics and Related Research??, vol.16, issue.8, pp.470-2288, 2012.
DOI : 10.1158/1078-0432.CCR-09-1634

X. Fang, C. Jiang, and Q. Xia, Effectiveness evaluation of dendritic cell immunotherapy for osteosarcoma on survival rate and in vitro immune response, Genetics and Molecular Research, vol.14, issue.4, pp.11763-11770, 2015.
DOI : 10.4238/2015.October.2.10

K. G. George and . Lucas, A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma, Cancer Immunol. Immunother, vol.64, pp.1251-1260, 2015.

N. Tarek and D. A. Lee, Natural Killer Cells for Osteosarcoma, Adv. Exp. Med. Biol, vol.804, pp.341-353, 2014.
DOI : 10.1007/978-3-319-04843-7_19

L. Fernández, J. Valentín, M. Zalacain, W. Leung, A. Patiño-garcía et al., Activated and expanded natural killer cells target osteosarcoma tumor initiating cells in an NKG2D???NKG2DL dependent manner, Cancer Letters, vol.368, issue.1, pp.54-63, 2015.
DOI : 10.1016/j.canlet.2015.07.042

S. Kiany and N. Gordon, Aerosol Delivery of Interleukin-2 in Combination with Adoptive Transfer of Natural Killer Cells for the Treatment of Lung Metastasis: Methodology and Effect, Methods Mol. Biol, vol.17, issue.6, pp.1441-285, 2016.
DOI : 10.1023/A:1006623001465

E. P. Buddingh, M. W. Schilham, S. E. Ruslan, D. Berghuis, K. Szuhai et al., Chemotherapy-resistant osteosarcoma is highly susceptible to IL-15-activated allogeneic and autologous NK cells, Cancer Immunology, Immunotherapy, vol.45, issue.4, pp.60-575, 2011.
DOI : 10.1186/1471-2407-9-186

URL : http://doi.org/10.1007/s00262-010-0965-3

S. R. Guma, D. A. Lee, Y. Ling, N. Gordon, and E. S. Kleinerman, Aerosol interleukin-2 induces natural killer cell proliferation in the lung and combination therapy improves the survival of mice with osteosarcoma lung metastasis, Pediatric Blood & Cancer, vol.190, issue.8, pp.61-1362, 2014.
DOI : 10.4049/jimmunol.1201314

S. Fallarini, T. Paoletti, N. Orsi-battaglini, and G. Lombardi, Invariant NKT cells increase drug-induced osteosarcoma cell death, British Journal of Pharmacology, vol.192, issue.7, pp.1533-1549, 2012.
DOI : 10.4049/jimmunol.1001018

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1476-5381.2012.02108.x/pdf

D. Siolas and G. J. Hannon, Patient-Derived Tumor Xenografts: Transforming Clinical Samples into Mouse Models, Cancer Research, vol.73, issue.17, pp.5315-5319, 2013.
DOI : 10.1158/0008-5472.CAN-13-1069

URL : http://cancerres.aacrjournals.org/content/canres/73/17/5315.full.pdf

R. Hoffman, Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts, Nature Reviews Cancer, vol.111, issue.8, pp.451-452, 2015.
DOI : 10.1016/S0092-8674(02)01229-1

R. M. Hoffman, Patient-Derived Mouse Models of Cancer Molecular and Translational Medicine Series, 2017.

J. Schütte, U. Haybaeck, J. Keilholz, M. T. Hoffman, A. M. Ross et al., Assessment of patient-derived tumour xenografts (PDXs) as a discovery tool for cancer epigenomics, Genome Med, vol.6, issue.116, 2014.

S. M. Nelson, Y. Dry, J. Li, T. A. Yanagawa, A. S. Russell et al., A patient-derived orthotopic xenograft (PDOX) mouse model of a cisplatinum-resistant osteosarcoma lung metastasis that was sensitive to temozolomide and trabectedin: implications for precision oncology, Oncotarget, vol.8, pp.62111-62119, 2017.

C. Blattmann, M. Thiemann, A. Stenzinger, E. K. Roth, A. Dittmar et al., Establishment of a patient-derived orthotopic osteosarcoma mouse model, Journal of Translational Medicine, vol.6, issue.2, 2015.
DOI : 10.1186/1748-717X-6-119

S. D. Hiroshima, S. M. Nelson, Y. Dry, J. Li, T. Yanagawa et al., Tumortargeting Salmonella typhimurium A1-R regresses an osteosarcoma in a patient-derived xenograft model resistant to a molecular-targeting drug, Oncotarget, vol.8, pp.8035-8042, 2017.

Y. Dry, J. Li, T. A. Yanagawa, A. S. Russell, N. Singh et al., Intra-arterial administration of tumortargeting Salmonella typhimurium A1-R regresses a cisplatin-resistant relapsed osteosarcoma in a patient-derived orthotopic xenograft (PDOX) mouse model, Cell Cycle, vol.16, pp.1164-1170, 2017.

I. M. Ny, L. M. Svane, J. A. Nilsson, and . Nilsson, Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model, Nat. Commun, vol.8, p.707, 2017.