J. Ludwig, Ewing sarcoma: historical perspectives, current state-of-the-art, and opportunities for targeted therapy in the future, Current Opinion in Oncology, vol.20, issue.4, pp.412-420, 2008.
DOI : 10.1097/CCO.0b013e328303ba1d

H. Jurgens and U. Dirksen, Ewing sarcoma treatment, European Journal of Cancer, vol.47, pp.366-367, 2011.
DOI : 10.1016/S0959-8049(11)70206-4

D. Hawkins, S. Boiling, . Dubois, . Ewing, and . Pizzo, Principles and practice of paediatric oncology, Wolters Kluwer, 2010.

K. Duchman, Y. Gao, and B. J. Miller, Prognostic factors for survival in patients with Ewing's sarcoma using the surveillance, epidemiology, and end results (SEER) program database, Cancer Epidemiology, vol.39, issue.2, pp.189-95, 2015.
DOI : 10.1016/j.canep.2014.12.012

N. Esiashvili, M. Goodman, M. Jr, and R. , Changes in Incidence and Survival of Ewing Sarcoma Patients Over the Past 3 Decades, Journal of Pediatric Hematology/Oncology, vol.30, issue.6, pp.425-455, 2008.
DOI : 10.1097/MPH.0b013e31816e22f3

R. Ladenstein, U. Pötschger, L. Deley, M. Whelan, J. Paulussen et al., Primary Disseminated Multifocal Ewing Sarcoma: Results of the Euro-EWING 99 Trial, Journal of Clinical Oncology, vol.28, issue.20, pp.3284-3291, 2010.
DOI : 10.1200/JCO.2009.22.9864

C. Rodriguez-galindo, F. Navid, T. Liu, C. Billups, B. Rao et al., Prognostic factors for local and distant control in Ewing sarcoma family of tumors, Annals of Oncology, vol.19, issue.4, pp.814-834, 2008.
DOI : 10.1093/annonc/mdm521

M. Paulussen, A. Craft, I. Lewis, A. Hackshaw, C. Douglas et al., Results of the EICESS-92 Study: Two Randomized Trials of Ewing's Sarcoma Treatment???Cyclophosphamide Compared With Ifosfamide in Standard-Risk Patients and Assessment of Benefit of Etoposide Added to Standard Treatment in High-Risk Patients, Journal of Clinical Oncology, vol.26, issue.27, pp.4385-4393, 2008.
DOI : 10.1200/JCO.2008.16.5720

O. Oberlin, M. Deley, B. Bui, J. Gentet, T. Philip et al., Prognostic Factors in Localized Ewing's Tumours and Peripheral NeuroectodermalTumours: The Third Study of the French Society of Paediatric Oncology (EW88 Study), British Journal of Cancer, vol.85, pp.11-1646, 2001.

G. Bacci, S. Ferrari, F. Bertoni, S. Rimondini, A. Longhi et al., Prognostic Factors in Nonmetastatic Ewing???s Sarcoma of Bone Treated With Adjuvant Chemotherapy: Analysis of 359 Patients at the Istituto Ortopedico Rizzoli, Journal of Clinical Oncology, vol.18, issue.1, pp.4-11, 2000.
DOI : 10.1200/JCO.2000.18.1.4

G. Treglia, M. Salsano, A. Stefanelli, M. Mattoli, A. Giordano et al., Diagnostic accuracy of 18???F-FDG-PET and PET/CT in patients with Ewing sarcoma family tumours: a systematic review and a meta-analysis, Skeletal Radiology, vol.49, issue.3, pp.249-56, 2012.
DOI : 10.3413/nukmed-03131004

E. Newman, R. Jones, and D. Hawkins, -glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing Sarcoma, Pediatric Blood & Cancer, vol.54, issue.7, pp.1113-1120, 2013.
DOI : 10.1002/pbc.22245

P. Sharma, B. Khangembam, K. Suman, H. Singh, S. Rastogi et al., Diagnostic accuracy of 18F-FDG PET/CT for detecting recurrence in patients with primary skeletal Ewing sarcoma, European Journal of Nuclear Medicine and Molecular Imaging, vol.59, issue.Suppl, pp.1036-1079, 2013.
DOI : 10.1002/pbc.24242

T. Völker, T. Denecke, I. Steffen, D. Misch, S. Schönberger et al., Positron Emission Tomography for Staging of Pediatric Sarcoma Patients: Results of a Prospective Multicenter Trial, Journal of Clinical Oncology, vol.25, issue.34, pp.5435-5476, 2007.
DOI : 10.1200/JCO.2007.12.2473

C. Franzius, H. Daldrup-link, A. Wagner-bohn, J. Sciuk, W. Heindel et al., FDG???PET for detection of recurrences from malignant primary bone tumors: comparison with conventional imaging, Annals of Oncology, vol.13, issue.1, pp.157-60, 2002.
DOI : 10.1093/annonc/mdf012

T. Györke, T. Zajic, A. Lange, O. Schäfer, E. Moser et al., Impact of FDG PET for staging of Ewing sarcomas and primitive neuroectodermal tumours, Nuclear Medicine Communications, vol.27, issue.1, pp.17-24, 2006.
DOI : 10.1097/01.mnm.0000186608.12895.69

J. Guimarães, L. Rigo, F. Lewin, and A. Emerick, The importance of PET/CT in the evaluation of patients with Ewing tumors, Radiologia Brasileira, vol.187, issue.15S, pp.175-180, 2015.
DOI : 10.2214/AJR.06.0171

D. Hawkins, S. Schuetze, J. Butrynski, J. Rajendran, C. Vernon et al., F]Fluorodeoxyglucose Positron Emission Tomography Predicts Outcome for Ewing Sarcoma Family of Tumors, Journal of Clinical Oncology, vol.23, issue.34, pp.8828-8862, 2005.
DOI : 10.1200/JCO.2005.01.7079

A. Raciborska, K. Bilska, K. Drabko, E. Michalak, R. Chaber et al., Response to chemotherapy estimates by FDG PET is an important prognostic factor in patients with Ewing sarcoma, Clinical and Translational Oncology, vol.27, issue.8, pp.18-189, 2016.
DOI : 10.1097/01.mnm.0000237986.31597.86

K. Gupta, A. Pawaskar, S. Basu, M. Rajan, R. Asopa et al., Potential Role of FDG PET Imaging in Predicting Metastatic Potential and Assessment of Therapeutic Response to Neoadjuvant Chemotherapy in Ewing Sarcoma Family of Tumors, Clinical Nuclear Medicine, vol.36, issue.11, pp.973-980, 2011.
DOI : 10.1097/RLU.0b013e31822f684b

L. Gaston, D. Bella, C. Slavin, J. Hicks, R. Choong et al., 18F-FDG PET response to neoadjuvant chemotherapy for Ewing sarcoma and osteosarcoma are different, Skeletal Radiology, vol.59, issue.2, pp.1007-1022, 2011.
DOI : 10.1002/1097-0142(19870115)59:2<252::AID-CNCR2820590213>3.0.CO;2-P

J. Hwang, I. Lim, C. Kong, D. Jeon, B. Byun et al., Prognostic Value of SUVmax Measured by Pretreatment Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Patients with Ewing Sarcoma, PLOS ONE, vol.2, issue.1
DOI : 10.1371/journal.pone.0153281.s002

C. Juergens, C. Weston, I. Lewis, J. Whelan, M. Paulussen et al., Safety assessment of intensive induction with vincristine, ifosfamide, doxorubicin, and etoposide (VIDE) in the treatment of Ewing tumors in the EURO-E.W.I.N.G. 99 clinical trial, Pediatric Blood & Cancer, vol.22, issue.1, pp.22-29, 2006.
DOI : 10.1002/pbc.20820

L. Deley, M. Paulussen, M. Lewis, I. Brennan, B. Ranft et al., Cyclophosphamide Compared With Ifosfamide in Consolidation Treatment of Standard-Risk Ewing Sarcoma: Results of the Randomized Noninferiority Euro-EWING99-R1 Trial, Journal of Clinical Oncology, vol.32, issue.23, pp.2440-2448, 2014.
DOI : 10.1200/JCO.2013.54.4833

A. Bryant and R. Cerfolio, The Maximum Standardized Uptake Values on Integrated FDG-PET/CT Is Useful in Differentiating Benign From Malignant Pulmonary Nodules, The Annals of Thoracic Surgery, vol.82, issue.3, pp.1016-1036, 2006.
DOI : 10.1016/j.athoracsur.2006.03.095

Y. Erdi, O. Mawlawi, S. Larson, M. Imbriaco, H. Yeung et al., Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding, Cancer, vol.34, issue.S12, pp.2505-2514, 1997.
DOI : 10.1117/12.967025

T. Kubo, T. Furuta, M. Johan, and M. Ochi, Prognostic significance of 18F-FDG PET at diagnosis in patients with soft tissue sarcoma and bone sarcoma; systematic review and meta-analysis, European Journal of Cancer, vol.58, pp.104-115, 2016.
DOI : 10.1016/j.ejca.2016.02.007

J. Lee, B. Hoang, A. Ziogas, and J. Zell, Analysis of prognostic factors in Ewing sarcoma using a population-based cancer registry, Cancer, vol.11, issue.8, pp.1964-73, 2010.
DOI : 10.1002/cncr.22821

G. López, J. Márquez-vega, G. Ramírez-villar, P. Cabrera, R. Ordóñez et al., Prognostic factors for overall survival in paediatric patients with Ewing sarcoma of bone treated according to multidisciplinary protocol, Clinical and Translational Oncology, vol.15, issue.[Suppl1], pp.294-301, 2012.
DOI : 10.1007/BF00263897

P. Tylski, S. Stute, N. Grotus, S. Hapdey, I. Gardin et al., Comparative Assessment of Methods for Estimating Tumor Volume and Standardized Uptake Value in 18F-FDG PET, Journal of Nuclear Medicine, vol.51, issue.2, pp.268-76, 2010.
DOI : 10.2967/jnumed.109.066241

URL : https://hal.archives-ouvertes.fr/inserm-00466261

M. Vanderhoek, S. Perlman, and R. Jeraj, Impact of the Definition of Peak Standardized Uptake Value on Quantification of Treatment Response, Journal of Nuclear Medicine, vol.53, issue.1, pp.4-11, 2012.
DOI : 10.2967/jnumed.111.093443

D. Visvikis, M. Hatt, F. Tixier, C. Le-rest, and C. , The age of reason for FDG PET image-derived indices, European Journal of Nuclear Medicine and Molecular Imaging, vol.25, issue.3, pp.1670-72, 2012.
DOI : 10.1038/nbt1306

URL : https://hal.archives-ouvertes.fr/inserm-00733622

T. Cazaentre, F. Morschhauser, M. Vermandel, N. Betrouni, T. Prangère et al., Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma, European Journal of Nuclear Medicine and Molecular Imaging, vol.29, issue.suppl, pp.494-504, 2010.
DOI : 10.1007/s00259-003-1166-5

M. Hatt, D. Visvikis, O. Pradier, and C. Cheze-le-rest, Baseline 18F-FDG PET image-derived parameters for therapy response prediction in oesophageal cancer, European Journal of Nuclear Medicine and Molecular Imaging, vol.17, issue.1, pp.1595-1606, 2011.
DOI : 10.1245/s10434-009-0719-7

URL : https://hal.archives-ouvertes.fr/inserm-00595534

G. Ulaner, A. Eaton, P. Morris, J. Lilienstein, K. Jhaveri et al., Prognostic value of quantitative fluorodeoxyglucose measurements in newly diagnosed metastatic breast cancer, Cancer Medicine, vol.10, issue.Suppl. 1, pp.725-733, 2013.
DOI : 10.1517/14656560902834961

H. Im, K. Pak, G. Cheon, K. Kang, S. Kim et al., Prognostic value of volumetric parameters of 18F-FDG PET in non-small-cell lung cancer: a meta-analysis, European Journal of Nuclear Medicine and Molecular Imaging, vol.285, issue.7, pp.241-51, 2014.
DOI : 10.1097/MNM.0b013e3283599999

M. Hatt, D. Visvikis, N. Albarghach, F. Tixier, O. Pradier et al., Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology, European Journal of Nuclear Medicine and Molecular Imaging, vol.51, issue.9, pp.1191-1202, 2011.
DOI : 10.2967/jnumed.110.078501

URL : https://hal.archives-ouvertes.fr/inserm-00574267

M. Kelly and J. Declerck, SUVref: reducing reconstruction-dependent variation in PET SUV, EJNMMI Research, vol.1, issue.1, p.16, 2011.
DOI : 10.2967/jnumed.109.063016