A. Bird, DNA methylation patterns and epigenetic memory, Genes & Development, vol.16, issue.1, pp.6-21, 2002.
DOI : 10.1101/gad.947102

URL : http://genesdev.cshlp.org/content/16/1/6.full.pdf

E. Li, T. H. Bestor, and R. Jaenisch, Targeted mutation of the DNA methyltransferase gene results in embryonic lethality, Cell, vol.69, issue.6, pp.915-926, 1992.
DOI : 10.1016/0092-8674(92)90611-F

M. J. Ronemus, M. Galbiati, C. Ticknor, J. Chen, and S. L. Dellaporta, Demethylation-Induced Developmental Pleiotropy in Arabidopsis, Science, vol.273, issue.5275, pp.654-657, 1996.
DOI : 10.1126/science.273.5275.654

T. Jenuwein and C. D. Allis, Translating the Histone Code, Science, vol.293, issue.5532, pp.1074-1080, 2001.
DOI : 10.1126/science.1063127

URL : http://www.gs.washington.edu/academics/courses/braun/55104/readings/jenuwein.pdf

H. Tamaru and E. U. Selker, A histone H3 methyltransferase controls DNA methylation in Neurospora crassa, Nature, vol.97, issue.6861, pp.277-283, 2001.
DOI : 10.1073/pnas.97.10.5237

H. Tamaru, X. Zhang, D. Mcmillen, P. B. Singh, J. Nakayama et al., Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa, Nature Genetics, vol.34, issue.1, pp.75-79, 2003.
DOI : 10.1038/ng1143

E. Kouzminova and E. U. Selker, dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora, The EMBO Journal, vol.20, issue.15, pp.4309-4323, 2001.
DOI : 10.1093/emboj/20.15.4309

J. P. Jackson, A. M. Lindroth, X. Cao, and S. E. Jacobsen, Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase, Nature, vol.416, issue.6880, pp.556-560, 2002.
DOI : 10.1038/nature731

D. Zilberman, X. Cao, and S. E. Jacobsen, ARGONAUTE4 Control of Locus-Specific siRNA Accumulation and DNA and Histone Methylation, Science, vol.299, issue.5607, pp.716-719, 2003.
DOI : 10.1126/science.1079695

L. Johnson, X. Cao, and S. E. Jacobsen, Interplay between Two Epigenetic Marks, Current Biology, vol.12, issue.16, pp.1360-1367, 2002.
DOI : 10.1016/S0960-9822(02)00976-4

URL : https://doi.org/10.1016/s0960-9822(02)00976-4

L. Bartee and J. Bender, Two Arabidopsis methylation-deficiency mutations confer only partial effects on a methylated endogenous gene family, Nucleic Acids Research, vol.29, issue.10, pp.2127-2134, 2001.
DOI : 10.1093/nar/29.10.2127

URL : https://academic.oup.com/nar/article-pdf/29/10/2127/9905846/292127.pdf

A. Vongs, T. Kakutani, R. A. Martienssen, and E. J. Richards, Arabidopsis thaliana DNA methylation mutants, Science, vol.260, issue.5116, pp.1926-1928, 1993.
DOI : 10.1126/science.8316832

K. Ahmad and S. Henikoff, The Histone Variant H3.3 Marks Active Chromatin by Replication-Independent Nucleosome Assembly, Molecular Cell, vol.9, issue.6, pp.1191-1200, 2002.
DOI : 10.1016/S1097-2765(02)00542-7

URL : https://hal.archives-ouvertes.fr/hal-00782360

H. Saze, M. Scheid, O. Paszkowski, and J. , Maintenance of CpG methylation is essential for epigenetic inheritance during plant gametogenesis, Nature Genetics, vol.34, issue.1, pp.65-69, 2003.
DOI : 10.1038/ng1138

A. V. Gendrel, Z. Lippman, C. Yordan, V. Colot, and R. A. Martienssen, Dependence of Heterochromatic Histone H3 Methylation Patterns on the Arabidopsis Gene DDM1, Science, vol.297, issue.5588, pp.1871-1873, 2002.
DOI : 10.1126/science.1074950

Y. Q. An, J. M. Mcdowell, S. Huang, E. C. Mckinney, S. Chambliss et al., Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues, The Plant Journal, vol.10, issue.1, pp.107-121, 1996.
DOI : 10.1046/j.1365-313X.1996.10010107.x

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular Cloning: A Laboratory Manual, 1989.

A. V. Probst, P. F. Fransz, J. Paszkowski, and O. M. Scheid, Two means of transcriptional reactivation within heterochromatin, The Plant Journal, vol.10, issue.4, pp.743-749, 2003.
DOI : 10.1046/j.1365-313X.2003.01667.x

URL : https://hal.archives-ouvertes.fr/inserm-01629519

Z. Jasencakova, W. J. Soppe, A. Meister, D. Gernand, B. M. Turner et al., - high methylation of H3 lysine 9 is dispensable for constitutive heterochromatin, The Plant Journal, vol.15, issue.3, pp.471-480, 2003.
DOI : 10.1038/47412

X. Nan, H. H. Ng, C. A. Johnson, C. D. Laherty, B. M. Turner et al., Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex, Nature, vol.314, issue.6683, pp.386-389, 1998.
DOI : 10.1042/bj3140631

M. C. Lorincz, D. Schubeler, S. C. Goeke, M. Walters, M. Groudine et al., Dynamic Analysis of Proviral Induction and De Novo Methylation: Implications for a Histone Deacetylase-Independent, Methylation Density-Dependent Mechanism of Transcriptional Repression, Molecular and Cellular Biology, vol.20, issue.3, pp.842-850, 2000.
DOI : 10.1128/MCB.20.3.842-850.2000

D. Benjamin and J. P. Jost, Reversal of methylation-mediated repression with short-chain fatty acids: evidence for an additional mechanism to histone deacetylation, Nucleic Acids Research, vol.29, issue.17, pp.3603-3610, 2001.
DOI : 10.1093/nar/29.17.3603

F. Fuks, P. J. Hurd, D. Wolf, X. Nan, A. P. Bird et al., The Methyl-CpG-binding Protein MeCP2 Links DNA Methylation to Histone Methylation, Journal of Biological Chemistry, vol.278, issue.6, pp.4035-4040, 2003.
DOI : 10.1038/nature731

URL : http://www.jbc.org/content/278/6/4035.full.pdf

A. M. Lindroth, X. Cao, J. P. Jackson, D. Zilberman, C. M. Mccallum et al., Requirement of CHROMOMETHYLASE3 for Maintenance of CpXpG Methylation, Science, vol.292, issue.5524, pp.2077-2080, 2001.
DOI : 10.1126/science.1059745