K. Aoun and A. Bouratbine, Cutaneous Leishmaniasis in North Africa: a review, Parasite, vol.6, issue.5, p.14, 2014.
DOI : 10.1371/journal.pntd.0001633

URL : https://hal.archives-ouvertes.fr/pasteur-01060927

M. Rhajaoui, Les leishmanioses humaines au Maroc??: une diversit?? nosog??ographique, Pathologie Biologie, vol.59, issue.4, pp.226-235, 2011.
DOI : 10.1016/j.patbio.2009.09.003

M. Er-rami, S. Benjelloun, H. Lahlou, A. Khalloufi, A. Kartouti et al., Cutaneous leishmaniasis in the military hospital Moulay Ismail of Meknes (Morocco): about 49 cases diagnosed between, Pathologiebiologie, vol.61, pp.49-53, 2005.

G. Duque and A. Descoteaux, Leishmania survival in the macrophage: where the ends justify the means, Current Opinion in Microbiology, vol.26, pp.32-40, 2015.
DOI : 10.1016/j.mib.2015.04.007

URL : https://hal.archives-ouvertes.fr/pasteur-01351880

K. Akarid, D. Arnoult, J. Micic-polianski, J. Sif, J. Estaquier et al., Leishmania major-mediated prevention of programmed cell death induction in infected macrophages is associated with the repression of mitochondrial release of cytochrome c, Journal of Leukocyte Biology, vol.76, issue.1, pp.95-103, 2004.
DOI : 10.1189/jlb.1001877

V. Rodrigues, A. Cordeiro-da-silva, M. Laforge, A. Ouaissi, R. Silvestre et al., Modulation of mammalian apoptotic pathways by intracellular protozoan parasites, Cellular Microbiology, vol.208, issue.3, pp.325-328, 2012.
DOI : 10.1084/jem.20101660

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2011.01737.x/pdf

M. Horta, B. Mendes, E. Roma, F. Noronha, J. Macêdo et al., Reactive Oxygen Species and Nitric Oxide in Cutaneous Leishmaniasis, Journal of Parasitology Research, vol.63, issue.6, 2012.
DOI : 10.1016/j.freeradbiomed.2008.01.027

URL : https://doi.org/10.1155/2012/203818

M. Das, S. Mukherjee, and C. Shaha, Hydrogen peroxide induces apoptosis-like death in Leishmania donovani promastigotes, J Cell Sci, vol.114, pp.2461-2470, 2001.

D. Arnoult, K. Akarid, A. Grodet, P. Petit, J. Estaquier et al., On the evolution of programmed cell death: apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization, Cell Death & Differentiation, vol.277, issue.Suppl, pp.65-81, 2002.
DOI : 10.1126/science.277.5324.370

Z. Kuang, R. Lewis, J. Curtis, Y. Zhan, B. Saunders et al., The SPRY domain???containing SOCS box protein SPSB2 targets iNOS for proteasomal degradation, The Journal of Cell Biology, vol.161, issue.1, pp.129-170, 2010.
DOI : 10.1038/416703a

URL : http://jcb.rupress.org/content/jcb/190/1/129.full.pdf

F. Liew, Y. Li, D. Moss, C. Parkinson, M. Rogers et al., Resistance toLeishmania major infection correlates with the induction of nitric oxide synthase in murine macrophages, European Journal of Immunology, vol.132, issue.12, pp.3009-3023, 1991.
DOI : 10.1002/eji.1830211216

D. Côrtes, M. Carneiro, L. Santos, S. Tcdo, T. Maioli et al., Low and high-dose intradermal infection with Leishmania majorand Leishmania amazonensis in C57BL/6 mice, Mem??rias do Instituto Oswaldo Cruz, vol.14, issue.6, pp.736-781, 2010.
DOI : 10.1016/0738-081X(96)00036-3

R. Kumar, R. Bumb, and P. Salotra, Evaluation of localized and systemic immune responses in cutaneous leishmaniasis caused by Leishmania tropica: interleukin-8, monocyte chemotactic protein-1 and nitric oxide are major regulatory factors, Immunology, vol.50, issue.2, pp.193-201, 2010.
DOI : 10.1093/infdis/173.3.699

G. Serarslan and E. Atik, Expression of inducible nitric oxide synthase in human cutaneous leishmaniasis, Molecular and Cellular Biochemistry, vol.179, issue.1-2, pp.147-156, 2005.
DOI : 10.1093/clind/24.4.684

P. Santos, R. Costa, J. Braz, L. Santos, A. Batista et al., Leishmania chagasi naturally resistant to nitric oxide isolated from humans and dogs with visceral leishmaniasis in Brazil, Nitric Oxide, vol.27, issue.1, pp.67-71, 2012.
DOI : 10.1016/j.niox.2012.04.004

URL : https://doi.org/10.1016/j.niox.2012.04.004

K. Gantt, S. Schultz-cherry, N. Rodriguez, S. Jeronimo, E. Nascimento et al., Activation of TGF-?? by Leishmania chagasi: Importance for Parasite Survival in Macrophages, The Journal of Immunology, vol.170, issue.5, pp.2613-2633, 2003.
DOI : 10.4049/jimmunol.170.5.2613

D. Moreira, N. Santarém, I. Loureiro, J. Tavares, A. Silva et al., Impact of Continuous Axenic Cultivation in Leishmania infantum Virulence, PLoS Neglected Tropical Diseases, vol.95, issue.Pt 2, p.1469, 2012.
DOI : 10.1371/journal.pntd.0001469.s004

URL : https://hal.archives-ouvertes.fr/inserm-00691462

T. Mouttaki, M. Morales-yuste, G. Merino-espinosa, S. Chiheb, H. Fellah et al., Molecular diagnosis of cutaneous leishmaniasis and identification of the causative Leishmania species in Morocco by using three PCR-based assays, Parasites & Vectors, vol.7, issue.1, p.420, 2014.
DOI : 10.1128/JCM.40.1.210-215.2002

R. Dey, N. Majumder, S. Majumdar, S. Bhattacharjee, S. Banerjee et al., Induction of Host Protective Th1 Immune Response by Chemokines in Leishmania donovani-infected BALB/c Mice, Scandinavian Journal of Immunology, vol.169, issue.6, pp.671-83, 2007.
DOI : 10.4049/jimmunol.169.7.3637

K. Akarid, M. Sinet, B. Desforges, and M. Gougerot-pocidalo, Inhibitory effect of nitric oxide on the replication of a murine retrovirus in vitro and in vivo, J Virol, vol.69, pp.7001-7006, 1995.

P. Rudrapaul, I. Sarma, N. Das, U. De, S. Bhattacharjee et al., New flavonol methyl ether from the leaves of Vitex peduncularis exhibits potential inhibitory activity against Leishmania donovani through activation of iNOS expression, European Journal of Medicinal Chemistry, vol.87, pp.328-363, 2014.
DOI : 10.1016/j.ejmech.2014.09.076

F. Ribeiro-gomes, M. Moniz-de-souza, M. Alexandre-moreira, W. Dias, M. Lopes et al., Neutrophils Activate Macrophages for Intracellular Killing of Leishmania major through Recruitment of TLR4 by Neutrophil Elastase, The Journal of Immunology, vol.179, issue.6, pp.3988-94, 2007.
DOI : 10.4049/jimmunol.179.6.3988

R. Lodge, T. Diallo, and A. Descoteaux, Leishmania donovani lipophosphoglycan blocks NADPH oxidase assembly at the phagosome membrane, Cellular Microbiology, vol.58, issue.12, pp.1922-1953, 2006.
DOI : 10.1046/j.1462-5822.2003.00294.x

URL : http://onlinelibrary.wiley.com/doi/10.1111/j.1462-5822.2006.00758.x/pdf

G. Forget, D. Gregory, L. Whitcombe, and M. Olivier, Role of Host Protein Tyrosine Phosphatase SHP-1 in Leishmania donovani-Induced Inhibition of Nitric Oxide Production, Infection and Immunity, vol.74, issue.11, pp.6272-6281, 2006.
DOI : 10.1128/IAI.00853-05

. Ministry and . Health, Santé en chiffres 2014 Direction de la Planification et des Ressources Financières, 2015.

M. Schmid, N. Zimara, A. Wege, and U. Ritter, parasites differ in C57BL/6 and BALB/c mice, European Journal of Immunology, vol.237, issue.11, pp.3295-306, 2014.
DOI : 10.1016/S0022-1759(99)00240-9

I. Costa, G. De-souza, M. De-oliveira, and I. De-almeida-abrahamsohn, S-nitrosoglutathione (GSNO) is cytotoxic to intracellular amastigotes and promotes healing of topically treated Leishmania major or Leishmania braziliensis skin lesions, Journal of Antimicrobial Chemotherapy, vol.68, issue.11, pp.2561-2569, 2013.
DOI : 10.1093/jac/dkt210

URL : https://academic.oup.com/jac/article-pdf/68/11/2561/2470532/dkt210.pdf

T. Van-assche, M. Deschacht, R. Da-luz, L. Maes, and P. Cos, Leishmania???macrophage interactions: Insights into the redox biology, Free Radical Biology and Medicine, vol.51, issue.2, pp.337-51, 2011.
DOI : 10.1016/j.freeradbiomed.2011.05.011

G. Souza, J. Yokoyama-yasunaka, A. Seabra, D. Miguel, M. De-oliveira et al., Leishmanicidal activity of primary S-nitrosothiols against Leishmania major and Leishmania amazonensis: Implications for the treatment of cutaneous leishmaniasis, Nitric Oxide, vol.15, issue.3, pp.209-225, 2006.
DOI : 10.1016/j.niox.2006.01.011

K. Gantt, T. Goldman, M. Mccormick, M. Miller, S. Jeronimo et al., Oxidative Responses of Human and Murine Macrophages During Phagocytosis of Leishmania chagasi, The Journal of Immunology, vol.167, issue.2, pp.893-901, 2001.
DOI : 10.4049/jimmunol.167.2.893

F. Santos, P. Vieira, R. Correa-oliveira, R. Giunchetti, C. Carneiro et al., Qualitative and quantitative immunohistochemical evaluation of iNOS expression in the spleen of dogs naturally infected with Leishmania chagasi, Parasitology Research, vol.38, issue.1???2, pp.1397-403, 2011.
DOI : 10.1016/j.micpath.2004.11.002

R. Reithinger, J. Dujardin, H. Louzir, C. Pirmez, A. B. Boooker et al., Cutaneous leishmaniasis, The Lancet Infectious Diseases, vol.7, issue.9, pp.581-96, 2007.
DOI : 10.1016/S1473-3099(07)70209-8

S. Chiheb, N. Guessous-idrissi, A. Hamdani, M. Riyad, M. Bichichi et al., Leishmania tropica cutaneous leishmaniasis in an emerging focus in North Morocco: new clinical forms, Ann Dermatol Venereol, vol.126, pp.419-441, 1999.

M. Rhajaoui, A. Nasereddin, H. Fellah, K. Azmi, F. Amarir et al., New Clinicoepidemiologic Profile of Cutaneous Leishmaniasis, Morocco, Emerging Infectious Diseases, vol.13, issue.9, p.1358, 2007.
DOI : 10.3201/eid1309.060946

URL : https://wwwnc.cdc.gov/eid/article/13/9/pdfs/06-0946.pdf

R. Assis, I. Ibraim, F. Noronha, S. Turco, and R. Soares, Glycoinositolphospholipids from Leishmania braziliensis and L. infantum: Modulation of Innate Immune System and Variations in Carbohydrate Structure, PLoS Neglected Tropical Diseases, vol.273, issue.Pt 17, p.1543, 2012.
DOI : 10.1371/journal.pntd.0001543.g009

M. Mcconville, L. Schnur, C. Jaffe, and P. Schneider, lipophosphoglycan: inter- and intra-specific polymorphism in Old World species, Biochemical Journal, vol.310, issue.3, pp.807-825, 1995.
DOI : 10.1042/bj3100807

L. Passero, R. Assis, T. Da-silva, P. Nogueira, D. Macedo et al., Differential modulation of macrophage response elicited by glycoinositolphospholipids and lipophosphoglycan from Leishmania (Viannia) shawi, Parasitology International, vol.64, issue.4, pp.32-37, 2015.
DOI : 10.1016/j.parint.2015.01.006

A. Ghoshal, G. Gerwig, J. Kamerling, and C. Mandal, Sialic acids in different Leishmania sp., its correlation with nitric oxide resistance and host responses, Glycobiology, vol.20, issue.5, pp.553-66, 2010.
DOI : 10.1093/glycob/cwp207

URL : https://academic.oup.com/glycob/article-pdf/20/5/553/5845177/cwp207.pdf

D. Moreira, V. Rodrigues, M. Abengozar, L. Rivas, E. Rial et al., Leishmania infantum Modulates Host Macrophage Mitochondrial Metabolism by Hijacking the SIRT1-AMPK Axis, PLOS Pathogens, vol.120, issue.3, p.1004684, 2015.
DOI : 10.1371/journal.ppat.1004684.s010

URL : https://hal.archives-ouvertes.fr/inserm-01136618

M. Resende, D. Moreira, A. J. Cunha, J. Neves, B. Cruz et al., Leishmania-Infected MHC Class IIhigh Dendritic Cells Polarize CD4+ T Cells toward a Nonprotective T-bet+ IFN-??+ IL-10+ Phenotype, The Journal of Immunology, vol.191, issue.1, pp.262-73, 2013.
DOI : 10.4049/jimmunol.1203518

URL : http://www.jimmunol.org/content/jimmunol/191/1/262.full.pdf