V. Menon, J. F. Eberth, R. L. Goodwin, and J. D. Potts, Altered Hemodynamics in the Embryonic Heart Affects Outflow Valve Development, Journal of Cardiovascular Development and Disease, vol.243, issue.2, pp.108-124, 2015.
DOI : 10.1002/(SICI)1097-0177(199707)209:3<261::AID-AJA2>3.0.CO;2-G

J. R. Hove, R. W. Koster, A. S. Forouhar, G. Acevedo-bolton, S. E. Fraser et al., Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis, Nature, vol.203, issue.6919, pp.172-177, 2003.
DOI : 10.1002/aja.1002030302

R. Padang, R. D. Bagnall, and C. Semsarian, Genetic Basis of Familial Valvular Heart Disease, Circulation: Cardiovascular Genetics, vol.5, issue.5, pp.569-580, 2012.
DOI : 10.1161/CIRCGENETICS.112.962894

J. Lincoln, A. W. Lange, and K. E. Yutzey, Hearts and bones: Shared regulatory mechanisms in heart valve, cartilage, tendon, and bone development, Developmental Biology, vol.294, issue.2, pp.292-302, 2006.
DOI : 10.1016/j.ydbio.2006.03.027

URL : https://doi.org/10.1016/j.ydbio.2006.03.027

R. Padang, R. D. Bagnall, T. Tsoutsman, P. G. Bannon, and C. Semsarian, Comparative transcriptome profiling in human bicuspid aortic valve disease using RNA sequencing, Physiological Genomics, vol.19, issue.3, pp.75-87, 2015.
DOI : 10.1186/gb-2002-3-7-research0034

M. Westerfield, The zebrafish book, A Guide for the Laboratory Use of Zebrafish (Danio rerio), 2000.

T. Brend and S. A. Holley, Zebrafish Whole Mount High-Resolution Double Fluorescent <em>In Situ</em> Hybridization, Journal of Visualized Experiments, issue.25, 2009.
DOI : 10.3791/1229

URL : http://europepmc.org/articles/pmc2789764?pdf=render

C. Thisse and B. Thisse, High-resolution in situ hybridization to whole-mount zebrafish embryos, Nature Protocols, vol.75, issue.1, pp.59-69, 2008.
DOI : 10.1038/nprot.2007.514

J. D. Sander, P. Zaback, J. K. Joung, D. F. Voytas, and D. Dobbs, Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool, Nucleic Acids Research, vol.35, issue.Web Server, pp.599-605, 2007.
DOI : 10.1093/nar/gkm349

URL : https://academic.oup.com/nar/article-pdf/35/suppl_2/W599/9585048/gkm349.pdf

T. Parker, P. A. Libourel, M. J. Hetheridge, R. I. Cumming, T. P. Sutcliffe et al., A multi-endpoint in vivo larval zebrafish (Danio rerio) model for the assessment of integrated cardiovascular function, Journal of Pharmacological and Toxicological Methods, vol.69, issue.1, pp.30-38, 2014.
DOI : 10.1016/j.vascn.2013.10.002

J. S. Kang, Y. Kawakami, Y. Bekku, Y. Ninomiya, J. C. Izpisua-belmonte et al., , in Zebrafish, zebrafish, pp.25-912, 2008.
DOI : 10.2108/zsj.25.912

M. Miao, A. E. Bruce, T. Bhanji, E. C. Davis, and F. W. Keeley, Differential expression of two tropoelastin genes in zebrafish, Matrix Biology, vol.26, issue.2, pp.115-124, 2007.
DOI : 10.1016/j.matbio.2006.09.011

A. J. Sehnert, A. Huq, B. M. Weinstein, C. Walker, M. Fishman et al., Cardiac troponin T is essential in sarcomere assembly and cardiac contractility, Nature Genetics, vol.31, issue.1, pp.31-106, 2002.
DOI : 10.1038/ng875

URL : http://www.nature.com/ng/journal/v31/n1/pdf/ng875.pdf

E. Heckel, F. Boselli, S. Roth, A. Krudewig, H. G. Belting et al., Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart Valve Development, Current Biology, vol.25, issue.10, pp.25-1354, 2015.
DOI : 10.1016/j.cub.2015.03.038

URL : https://doi.org/10.1016/j.cub.2015.03.038

B. Willems, S. Tao, T. Yu, A. Huysseune, P. E. Witten et al., The Wnt Co-Receptor Lrp5 Is Required for Cranial Neural Crest Cell Migration in Zebrafish, PLOS ONE, vol.4, issue.6, p.131768, 2015.
DOI : 10.1371/journal.pone.0131768.s002

Y. Moriyama, F. Ito, H. Takeda, T. Yano, M. Okabe et al., Evolution of the fish heart by sub/neofunctionalization of an elastin gene, Nature Communications, vol.110, issue.73, pp.7-2016
DOI : 10.1073/pnas.1308335110