J. E. Pittman and T. W. Ferkol, The Evolution of Cystic Fibrosis Care, Chest, vol.148, issue.2, pp.533-542, 2015.
DOI : 10.1378/chest.14-1997

J. R. Riordan, Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA, Science, vol.245, issue.4922, pp.1066-1073, 1989.
DOI : 10.1126/science.2475911

H. Corvol, K. E. Thompson, O. Tabary, P. Le-rouzic, and L. Guillot, Translating the genetics of cystic fibrosis to personalized medicine, Translational Research, vol.168, pp.40-49, 2015.
DOI : 10.1016/j.trsl.2015.04.008

URL : https://hal.archives-ouvertes.fr/hal-01148747

F. Van-goor, Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770, Proc. Natl Acad. Sci. USA, pp.18825-18830, 2009.

B. Nilius and G. Droogmans, Amazing chloride channels: an overview, Acta Physiologica Scandinavica, vol.97, issue.2, pp.119-147, 2003.
DOI : 10.1074/jbc.271.24.14092

B. C. Schroeder, T. Cheng, Y. N. Jan, and L. Jan, Expression Cloning of TMEM16A as a Calcium-Activated Chloride Channel Subunit, Cell, vol.134, issue.6, pp.1019-1029, 2008.
DOI : 10.1016/j.cell.2008.09.003

Y. D. Yang, TMEM16A confers receptor-activated calcium-dependent chloride conductance, Nature, vol.32, issue.7217, pp.1210-1215, 2008.
DOI : 10.1056/NEJM199108223250802

A. Caputo, TMEM16A, A Membrane Protein Associated with Calcium-Dependent Chloride Channel Activity, Science, vol.60, issue.3, pp.590-594, 2008.
DOI : 10.1016/S0301-0082(99)00027-1

L. Jia, W. Liu, L. Guan, M. Lu, and K. Wang, Inhibition of Calcium-Activated Chloride Channel ANO1/TMEM16A Suppresses Tumor Growth and Invasion in Human Lung Cancer, PLOS ONE, vol.9, issue.1, p.136584, 2015.
DOI : 10.1371/journal.pone.0136584.t001

J. E. Stanich, Ano1 as a regulator of proliferation, AJP: Gastrointestinal and Liver Physiology, vol.301, issue.6, pp.1044-1051, 2011.
DOI : 10.1152/ajpgi.00196.2011

J. Jung, Dynamic modulation of ANO1/TMEM16A HCO3- permeability by Ca2+/calmodulin, Proc. Natl Acad. Sci. USA, pp.360-365, 2013.
DOI : 10.1016/S0006-3495(04)74322-2

F. Huang, Studies on expression and function of the TMEM16A calciumactivated chloride channel, Proc. Natl Acad. Sci. USA, pp.21413-21418, 2009.

M. Ruffin, Anoctamin 1 dysregulation alters bronchial epithelial repair in cystic fibrosis, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1832, issue.12, pp.2340-2351, 2013.
DOI : 10.1016/j.bbadis.2013.09.012

F. Sonneville, New Insights about miRNAs in Cystic Fibrosis, The American Journal of Pathology, vol.185, issue.4, pp.897-908, 2015.
DOI : 10.1016/j.ajpath.2014.12.022

J. Elmen, Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality, Nucleic Acids Research, vol.33, issue.1, pp.439-447, 2005.
DOI : 10.1093/nar/gki193

N. Gupta, A Locked Nucleic Acid Antisense Oligonucleotide (LNA) Silences PCSK9 and Enhances LDLR Expression In Vitro and In Vivo, PLoS ONE, vol.204, issue.5, p.10682, 2010.
DOI : 10.1371/journal.pone.0010682.s001

J. R. Rock, C. R. Futtner, and B. D. Harfe, The transmembrane protein TMEM16A is required for normal development of the murine trachea, Developmental Biology, vol.321, issue.1, pp.141-149, 2008.
DOI : 10.1016/j.ydbio.2008.06.009

K. Kunzelmann, Bestrophin and TMEM16???Ca2+ activated Cl??? channels with different functions, Cell Calcium, vol.46, issue.4, pp.233-241, 2009.
DOI : 10.1016/j.ceca.2009.09.003

A. Gianotti, Pharmacological analysis of epithelial chloride secretion mechanisms in adult murine airways, European Journal of Pharmacology, vol.781, pp.100-108, 2016.
DOI : 10.1016/j.ejphar.2016.04.007

G. Gorrieri, Goblet Cell Hyperplasia Requires High Bicarbonate Transport To Support Mucin Release, Scientific Reports, vol.188, issue.1, p.36016, 2016.
DOI : 10.1007/s00232-001-0189-8

S. Bermbach, Mechanisms of Cilia-Driven Transport in the Airways in the Absence of Mucus, American Journal of Respiratory Cell and Molecular Biology, vol.51, issue.1, pp.56-67, 2014.
DOI : 10.1165/rcmb.2012-0530OC

M. R. Knowles, L. L. Clarke, and R. C. Boucher, Activation by Extracellular Nucleotides of Chloride Secretion in the Airway Epithelia of Patients with Cystic Fibrosis, New England Journal of Medicine, vol.325, issue.8, pp.533-538, 1991.
DOI : 10.1056/NEJM199108223250802

E. R. Lazarowski and R. C. Boucher, Purinergic receptors in airway epithelia, Current Opinion in Pharmacology, vol.9, issue.3, pp.262-267, 2009.
DOI : 10.1016/j.coph.2009.02.004

D. Kellerman, R. Evans, D. Mathews, and C. Shaffer, Inhaled P2Y2 receptor agonists as a treatment for patients with Cystic Fibrosis lung disease, Advanced Drug Delivery Reviews, vol.54, issue.11, pp.1463-1474, 2002.
DOI : 10.1016/S0169-409X(02)00154-0

K. Kunzelmann, Purinergic inhibition of the epithelial Na+ transport via hydrolysis of PIP2, The FASEB Journal, vol.19, pp.142-143, 2005.
DOI : 10.1096/fj.04-2314fje

B. R. Yerxa, Pharmacology of INS37217 [P1-(Uridine 5')-P4- (2'-deoxycytidine 5')tetraphosphate, Tetrasodium Salt], a Next-Generation P2Y2 Receptor Agonist for the Treatment of Cystic Fibrosis, Journal of Pharmacology and Experimental Therapeutics, vol.302, issue.3, pp.871-880, 2002.
DOI : 10.1124/jpet.102.035485

F. Ratjen, Long term effects of denufosol tetrasodium in patients with cystic fibrosis, Journal of Cystic Fibrosis, vol.11, issue.6, pp.539-549, 2012.
DOI : 10.1016/j.jcf.2012.05.003

R. B. Moss, Pitfalls of Drug Development: Lessons Learned from Trials of Denufosol in Cystic Fibrosis, The Journal of Pediatrics, vol.162, issue.4, pp.676-680, 2013.
DOI : 10.1016/j.jpeds.2012.11.034

D. Kellerman, M. Mills-wilson, and C. Johnson, Pharmacokinetics of INS37217 after inhaled and intravenous administration in healthy volunteers, Pediatr Pulmonol, vol.38, p.348, 2004.

L. Saiman, Effect of Azithromycin on Pulmonary Function in Patients With Cystic Fibrosis Uninfected With <emph type="ital">Pseudomonas aeruginosa</emph><subtitle>A Randomized Controlled Trial</subtitle>, JAMA, vol.303, issue.17, pp.1707-1715, 2010.
DOI : 10.1001/jama.2010.563

J. M. Quan, A two-year randomized, placebo-controlled trial of dornase alfa in young patients with cystic fibrosis with mild lung function abnormalities, The Journal of Pediatrics, vol.139, issue.6, pp.813-820, 2001.
DOI : 10.1067/mpd.2001.118570

J. Kurreck, E. Wyszko, C. Gillen, and V. A. Erdmann, Design of antisense oligonucleotides stabilized by locked nucleic acids, Nucleic Acids Research, vol.30, issue.9, pp.1911-1918, 2002.
DOI : 10.1093/nar/30.9.1911

K. A. Lennox and M. A. Behlke, A Direct Comparison of Anti-microRNA Oligonucleotide Potency, Pharmaceutical Research, vol.136, issue.9, pp.1788-1799, 2010.
DOI : 10.1016/0304-4165(95)00053-E

K. R. Schiller, P. J. Maniak, and S. M. Grady, Cystic fibrosis transmembrane conductance regulator is involved in airway epithelial wound repair, AJP: Cell Physiology, vol.299, issue.5, pp.912-921, 2010.
DOI : 10.1152/ajpcell.00215.2010

M. Lindow and S. Kauppinen, Discovering the first microRNA-targeted drug, The Journal of Cell Biology, vol.54, issue.3, pp.407-412, 2012.
DOI : 10.1016/j.ceb.2009.01.029

E. S. Hildebrandt-eriksen, A locked nucleic acid oligonucleotide targeting microRNA 122 is well-tolerated in cynomolgus monkeys. Nucleic Acid Ther, pp.152-161, 2012.

H. L. Janssen, Treatment of HCV Infection by Targeting MicroRNA, New England Journal of Medicine, vol.368, issue.18, pp.1685-1694, 2013.
DOI : 10.1056/NEJMoa1209026

V. Saint-criq, Azithromycin fails to reduce inflammation in cystic fibrosis airway epithelial cells, European Journal of Pharmacology, vol.674, issue.1, pp.1-6, 2012.
DOI : 10.1016/j.ejphar.2011.10.027

E. Bonvin, Congenital tracheal malformation in cystic fibrosis transmembrane conductance regulator-deficient mice, The Journal of Physiology, vol.211, issue.Part 21, pp.3231-3243, 2008.
DOI : 10.1016/S0378-1119(98)00090-0

URL : https://hal.archives-ouvertes.fr/hal-00390666